

ПР200

Устройство управляющее многофункциональное

EAC

Руководство по эксплуатации

Содержание

Предупреждающие сообщения	
Термины и аббревиатуры	5
Введение	6
1 Назначение и функции	
2 Технические характеристики и условия эксплуатации	8
2.1 Технические характеристики	
2.2 Условия эксплуатации	
3 Меры безопасности	
4 Монтаж	
4.1 Установка	
4.2 «Быстрая» замена	17
5 Подключение	18
5.1 Рекомендации к подключению	
5.2 Порядок подключения	18
5.3 Схемы гальванической развязки	
5.4 Помехи и методы их подавления	
5.5 Подключение датчиков	
5.5.1 Общие сведения	
5.5.2 Подключение датчиков с дискретным выходом	
5.5.3 Подключение датчиков с аналоговым выходом	
5.6 Подключение нагрузки к ВЭ	
5.6.1 Подключение нагрузки к ВЭ типа «К»	
5.6.2 Подключение нагрузки к ВЭ типа «Р»	
5.6.3 Подключение нагрузки к ВЭ типа «И»	
5.6.4 Подключение нагрузки к ВЭ типа «У»	
5.7 Подключение модуля расширения	
5.8 Подключение к сети RS-485	
5.9 Подключение к ПК	
6 Настройка и программирование	29
6.1 Общие сведения	
6.2 Настройка универсальных входов (AI1AI4)	
6.2.1 Настройка режима работы входа	
6.2.2 Работа входа в аналоговом режиме	
6.2.3 Работа входа в дискретном режиме	
6.3 Аналоговые выходы АО1 и АО2	ےدد دد
6.4 Режимы работы	
6.4.1 Рабочий режим	33 33
6.4.2 Аварийный режим	
6.4.3 Выбор специальных режимов работы перемычками на плате	
6.5 Сетевой интерфейс	
6.5.1 Общие сведения	
6.5.2 Режим Master	
6.5.3 Режим Slave	
6.5.4 Карта регистров Modbus	
7 Эксплуатация	
7.1 Управление и индикация	39
7.2 Работа с меню	
7.2.1 Системное меню	
7.2.2 Переходы между экранами	
7.2.3 Режим редактирования	
7.2.4 Режим автоформатирования	
7.3 Работа с модулями расширения	
7.4 Часы реального времени	
7.5 Настройка даты и времени с лицевой панели	

8 Техническое обслуживание	45
8.1 Общие указания	45
8.2 Юстировка	45
8.2.1 Общие указания	45
8.2.2 Юстировка прибора для работы с активными датчиками с вь	ходным
сигналом «0…10 В», «0…4000 Ом» и «4…20 мА»	45
8.2.3 Юстировка выходных элементов типа «И»	46
8.2.4 Юстировка выходных элементов типа «У»	
8.3 Снятие крышки	48
8.4 Замена элемента питания	49
8.5 Установка интерфейсной платы	50
9 Маркировка	52
10 Упаковка	
11 Комплектность	
12 Транспортирование и хранение	
13 Гарантийные обязательства	
ПРИЛОЖЕНИЕ А. Описание клеммников	57

Предупреждающие сообщения

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ сообщает о **непосредственной угрозе опасной ситуации**, которая приведет к смерти или серьезной травме, если ее не предотвратить.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к небольшим травмам.

ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к повреждению имущества.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ обращает внимание на полезные советы и рекомендации, а также информацию для эффективной и безаварийной работы оборудования.

Ограничение ответственности

Ни при каких обстоятельствах ООО «Производственное объединение OBEH» и его контрагенты не будут нести юридическую ответственность и не будут признавать за собой какие-либо обязательства в связи с любым ущербом, возникшим в результате установки или использования прибора с нарушением действующей нормативно-технической документации.

Термины и аббревиатуры

АЦП – аналогово-цифровой преобразователь.

Modbus – открытый протокол обмена по сети RS-485, разработан компанией ModiCon, в настоящий момент поддерживается независимой организацией Modbus-IDA (www.modbus.org).

OwenLogic – специализированная среда программирования прибора на основе визуального языка графических диаграмм FBD (Function Block Diagram).

Retain-память – энергонезависимая память для хранения значений Retain-переменных пользовательской программы.

Retain-переменные – переменные пользовательской программы, значение которых сохраняется в случае выключения питания контроллера.

Выходной элемент (ВЭ) – элемент схемы прибора, служащий для подключения исполнительных механизмов или коммутации внешнего управляющего сигнала.

Исполнительный механизм (ИМ) – внешнее устройство, функционирующее под управлением прибора.

ЖКИ – жидкокристаллический индикатор.

ОЗУ – оперативное запоминающее устройство, оперативная память.

ПЗУ – постоянное запоминающее устройство, энергонезависимая память.

ПК – персональный компьютер.

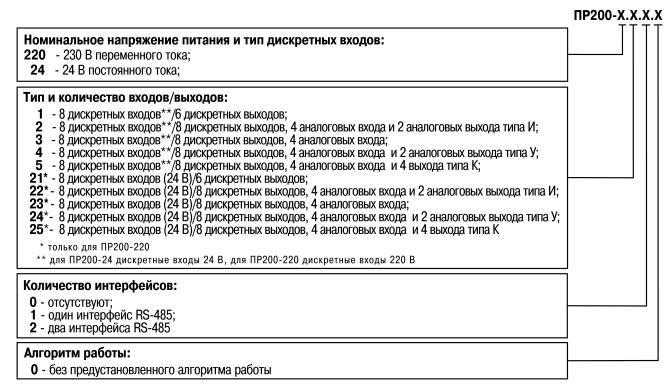
ПО – программное обеспечение.

Пользовательская программа – программа, созданная в OwenLogic.

ЦАП – цифро-аналоговый преобразователь.

Элементы меню – элементы, выводимые на экране прибора и несущие информацию, заложенную при написании пользовательской программы.

Введение


Настоящее Руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, технической эксплуатацией и обслуживанием устройства управляющего многофункционального ПР200, в дальнейшем по тексту именуемых «прибор» или «ПР200».

Подключение, регулировка и техобслуживание прибора должны производиться только квалифицированными специалистами после прочтения настоящего руководства по эксплуатации.

Функциональные возможности ПР200 могут быть расширены с помощью:

- плат расширения ПР-ИП485 (размещаются внутри корпуса прибора, см.раздел 8.5);
- модулей расширения (подключаются к интерфейсу модульной шины с помощью кабеля, см. раздел 5.7):
 - ПРМ-Х.1 модуль дискретного ввода-вывода;
 - ПРМ-Х.3 модуль аналогового ввода-вывода.

Прибор изготавливается в различных модификациях, зашифрованных в коде полного условного обозначения:

Наименование при заказе: ПР200-220.2.2.0

Приведенное условное обозначение указывает, что изготовлению и поставке подлежит устройство управляющее многофункциональное модели ПР200, работающее при номинальном напряжении питания 230 В переменного тока, оснащенное:

- восемью дискретными входами для сигналов 230 В переменного тока;
- четырьмя универсальными входами для измерения аналоговых сигналов 0...10 В, 4...20 мА, 0...4000 Ом:
- восемью дискретными выходами типа электромагнитное реле;
- двумя аналоговыми выходами ЦАП «параметр ток»;
- двумя интерфейсами RS-485.

1 Назначение и функции

Прибор предназначен для построения простых автоматизированных систем управления технологическим оборудованием в промышленности, жилищно-коммунальном и сельском хозяйстве.

ПР200 программируется в OwenLogic на языке FBD. Пользовательская программа записывается в энергонезависимую Flash-память прибора.

Прибор поддерживает следующие функции:

- работа по программе, записанной в память;
- работа в сети RS-485 по протоколу Modbus RTU/Modbus ASCII в режиме Master или Slave;
- обработка входных сигналов от датчиков;
- управление подключенными устройствами с помощью дискретных или аналоговых сигналов;
- отображение данных на ЖКИ;
- ввод и редактирование данных с помощью кнопок на лицевой панели.

Прибор выпускается согласно ТУ 4252-009-46526536-2015.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Таблица 2.1 – Общие параметры прибора

Параметр	Значение			
Вычислительные ресурсы и дополнительное оборудование				
Минимальное время цикла (зависит от сложности программы)	1 мс			
Объем памяти для сетевых переменных (режим Slave)	128 байт			
Количество подключаемых модулей расширения, не более	2			
Модули расширения	Серия ПРМ			
Встроенные часы реального времени	Да			
Точность работы встроенных часов прибора при +25 °C	± 3 с/сутки			
Время автономной работы часов от сменного элемента питания	5 лет			
Элемент питания встроенных часов реального времени	CR2032			
Индикация и элем	енты управления			
Тип дисплея	Текстовый монохромный ЖКИ с подсветкой, 2 × 16 символов			
Дискретные индикаторы	Два светодиодных индикатора (красный и зеленый)			
Поддерживаемые языки	русский, английский			
Количество механических кнопок	6			
Ca				
Сетевые во Количество интерфейсных плат, не более	2			
(зависит от модификации)	_			
Протокол связи	Modbus-RTU, Modbus-ASCII			
Режим работы	Master/Slave			
Скорость передачи данных	9600, 14400, 19200, 38400, 57600, 115200 бит/с			
Электрическая прочность изоляции между RS-485 питания и другими цепями	1500 B			
Интерфейсная плата	ПР-ИП485			
Программ	ирование			
Среда программирования	OwenLogic			
Объем Retain-памяти	1016 байт			
Память ПЗУ	128 кбайт			
Память ОЗУ	32 кбайт			
Конструкция				
Тип корпуса	Для крепления на DIN-рейку (35 мм)			
Габаритные размеры	123 × 90 × 58 мм			
Степень защиты корпуса по ГОСТ 14254-2015	IP20			
Масса прибора, не более (для всех вариантов исполнений)	0,6 кг			
Средний срок службы	8 лет			

Таблица 2.2 – Модификации прибора

Модификация			Вхо	оды	Вых	ходы	485
	Тип питания	BN□*	Дискретные	Аналоговые	Дискретные	Аналоговые	Количество RS-485
ПР200-220.1.0	~230 B	_	8 ДФ	_	6 P	_	
ПР200-220.1.1	~230 B	_	8 ДФ	_	6 P	_	1
ПР200-220.1.2	~230 B	_	8 ДФ	_	6 P	_	2
ПР200-220.2.0	~230 B	+	8 ДФ	4 ДАТ	8 P	2И	_
ПР200-220.2.1	~230 B	+	8 ДФ	4 ДАТ	8 P	2И	1
ПР200-220.2.2	~230 B	+	8 ДФ	4 ДАТ	8 P	2И	2
ПР200-220.3.0	~230 B	+	8 ДФ	4 ДАТ	8 P	_	_
ПР200-220.3.1	~230 B	+	8 ДФ	4 ДАТ	8 P	_	1
ПР200-220.3.2	~230 B	+	8 ДФ	4 ДАТ	8 P	_	2
ПР200-220.4.0	~230 B	+	8 ДФ	4 ДАТ	8 P	2У	_
ПР200-220.4.1	~230 B	+	8 ДФ	4 ДАТ	8 P	2У	1
ПР200-220.4.2	~230 B	+	8 ДФ	4 ДАТ	8 P	2У	2
ПР200-220.5.0	~230 B	+	8 ДФ	4 ДАТ	8 P	4 K	_
ПР200-220.5.1	~230 B	+	8 ДФ	4 ДАТ	8 P	4 K	1
ПР200-220.5.2	~230 B	+	8 ДФ	4 ДАТ	8 P	4 K	2
ПР200-220.21.0	~230 B		8Д	_	6P	_	
ПР200-220.21.1	~230 B		8Д	_	6P	_	1
ПР200-220.21.2	~230 B		8Д		6P	_	2
ПР200-220.22.0	~230 B	+	8Д	4 ДАТ	8 P	2И	
ПР200-220.22.1	~230 B	+	8Д	4 ДАТ	8 P	2И	1
ПР200-220.22.2	~230 B	+	8Д	4 ДАТ	8 P	2И	2
ПР200-220.23.0	~230 B	+	8Д	4 ДАТ	8 P		
ПР200-220.23.1	~230 B	+	8Д	4 ДАТ	8 P	_	1
ПР200-220.23.2	~230 B	+	8Д	4 ДАТ	8 P	_	2
ПР200-220.24.0	~230 B	+	8Д	4 ДАТ	8 P	2У	_
ПР200-220.24.1	~230 B	+	8Д	4 ДАТ	8 P	2У	1
ПР200-220.24.2	~230 B	+	8Д	4 ДАТ	8 P	2У	2
ПР200-220.25.0	~230 B	+	8Д	4 ДАТ	8 P	4 K	_
ПР200-220.25.1	~230 B	+	8Д	4 ДАТ	8 P	4 K	1
ПР200-220.25.2	~230 B	+	8Д	4 ДАТ	8 P	4 K	2
ПР200-24.1.0	=24 B	_	8Д	_	6 P	_	_
ПР200-24.1.1	=24 B		8Д	_	6 P	_	1
ПР200-24.1.2	=24 B	_	8Д		6 P	-	2
ПР200-24.2.0	=24 B		8Д	4 ДАТ	8 P	2И	
ПР200-24.2.1	=24 B	_	8Д	4 ДАТ	8 P	2И	1
ПР200-24.2.2	=24 B	_	8Д	4 ДАТ	8 P	2И	2
ПР200-24.3.0	=24 B		8Д	4 ДАТ	8 P	_	
ПР200-24.3.1	=24 B	<u> </u>	8Д	4 ДАТ	8 P	_	1
ПР200-24.3.2	=24 B	<u> </u>	8Д	4 ДАТ	8 P		2
ΠP200-24.4.0	=24 B		8Д	4 ДАТ	8 P	2У	
ПР200-24.4.1	=24 B		8Д	4 A	8 P	2У	1

Продолжение таблицы 2.2

Модификация			Вхс	оды	Вых	коды	485
	Тип питания	ВИП *	Дискретные	Аналоговые	Дискретные	Аналоговые	Количество RS⊶
ПР200-24.4.2	=24 B	_	8Д	4 ДАТ	8 P	2У	2
ПР200-24.5.0	=24 B	_	8Д	4 ДАТ	8 P	4 K	_
ПР200-24.5.1	=24 B	_	8Д	4 ДАТ	8 P	4 K	1
ПР200-24.5.2	=24 B	_	8Д	4 ДАТ	8 P	4 K	2

ПРИМЕЧАНИЕ

* ВИП — встроенный источник питания.

Таблица 2.3 – Коды входов/выходов

Тип	Код	Таблица характеристик
Дискретный вход для сигналов ~230 B	ДФ	таблица 2.7
Дискретный вход для сигналов =24 В	Д	таблица 2.8
Универсальный аналоговый вход	ДАТ	таблица 2.9
Дискретный выход типа «электромагнитное реле»	Р	таблица 2.10
Аналоговый выход типа «параметр-ток»	И	таблица 2.11
Аналоговый выход типа «параметр- напряжение»	У	таблица 2.12
Дискретный выход типа «транзисторная оптопара»	К	таблица 2.13

Таблица 2.4 – Характеристики приборов с питанием 230 В без встроенного источника питания

Параметр	Значение
Диапазон напряжения питания	94264 В (номинальное 230 В, при 4763 Гц)
Гальваническая развязка	Есть
Электрическая прочность изоляции между входом питания и другими цепями	2830 B
Потребляемая мощность, не более	10 BA

Таблица 2.5 – Характеристики приборов с питанием 230 В со встроенным источником питания

Параметр	Значение
Диапазон напряжения питания	94264 В (номинальное 230 В, при 4763 Гц)
Гальваническая развязка	Есть
Электрическая прочность изоляции между входом питания и другими цепями	2830 B
Встроенный источник питания	Есть
Потребляемая мощность, не более	17 BA

Таблица 2.6 – Характеристики встроенного источника питания

Параметр	Значение
Выходное напряжение встроенного источника питания постоянного тока	24 ± 3 B
Ток нагрузки встроенного источника питания, не более	100 мА
Электрическая прочность изоляции между выходом питания и другими цепями	1780 B

Таблица 2.7 – Характеристики дискретных входов типа «ДФ»

Наименование	Значение
Номинальное напряжение питания	230 В (переменный ток)
Максимально допустимое напряжение питания	264 В (переменный ток)
Тип датчика для дискретного входа	механические коммутационные устройства (контакты кнопок, выключателей, герконов, реле и т. п.)
Напряжение «логической единицы»	159264 B
Ток «логической единицы»	0,751,5 мА
Напряжение «логического нуля»	040 B
Ток «логического нуля»	00,5 мА
Минимальная длительность импульса, воспринимаемая дискретным входом	50 мс
Максимальное время реакции прибора (изменения значения ВЭ связанного с дискретным входом)	100 мс
Электрическая прочность изоляции между входами и между другими цепями прибора	2830 B

Таблица 2.8 – Характеристики дискретных входов типа «Д»

Наименование	Значение
Номинальное напряжение питания	24 В (постоянный ток)
Максимально допустимое напряжение питания	30 В (постоянный ток)
Тип датчика для дискретного входа	механические коммутационные устройства (контакты кнопок, выключателей, герконов, реле и т. п.); датчики с выходными транзисторными ключами (например, транзистор p-n-p-типа с открытым коллектором на выходе)
Напряжение «логической единицы»	1530 B
Ток «логической единицы»	05 мА
Напряжение «логического нуля»	−3+5 B
Ток «логического нуля»	01 мА
Минимальная длительность импульса, воспринимаемая дискретным входом	5 мс
Максимальное время реакции прибора (изменения значения ВЭ связанного с дискретным входом)	30 мс
Электрическая прочность изоляции между входами и другими цепями прибора	2830 B

Таблица 2.9 – Характеристики универсальных дискретно-аналоговых входов типа «ДАТ»

Наименование	Значение		
Разрешающая способность АЦП	12 бит		
	Режим аналогового входа		
Тип измеряемых сигналов, униполярный	010 В, 420 мА, 04 кОм		
Предел основной приведенной погрешности	± 0,5 %		

Продолжение таблицы 2.9

Наименование	Значение	
Дополнительная приведенная погрешность, вызванная изменением температуры окружающей среды в пределах рабочего диапазона, на каждые 10 градусов	0,05 %	
Предельное положительное входное напряжение, для режима дискретного входа и датчика 010 В	36 B	
Предельное отрицательное входное напряжение, для режима дискретного входа и датчика 0…10 В	–36 B*	
Входное сопротивление для режима 010 В	61 кОм	

* При входном напряжении на любом из аналоговых входов менее 0,5 В, метрологические характеристики остальных аналоговых входов не гарантируются.

' '	
Сопротивление встроенного шунтирующего резистора для режима 420 мА	121 Ом
Значение наименьшего значащего разряда	2,7 мВ ((010 В)/3700) 6 мкА ((020 мА)/3700)
Период обновления результатов измерения четырех каналов, не более	10 мс
Гальваническая развязка	Отсутствует
	Режим дискретного входа
Напряжение «логической единицы»	1030 B
Напряжение «логического нуля»	−3+5 B
Ток «логической единицы»	2,55,0 мА
Ток «логического нуля»	01 мА
Гальваническая развязка	Отсутствует

Таблица 2.10 - Характеристики дискретных выходов типа «Р»

Наименование	Значение	
Тип выходного устройства	Электромагнитное реле (нормально разомкнутые контакты)	
Электрическая прочность изоляции между выходом и другими цепями	2830 B	
Коммутируемое напряжение в нагрузке для цепи постоянного тока, не более для цепи переменного тока, не более	30 В (резистивная нагрузка) 250 В (резистивная нагрузка)	
Допустимый ток нагрузки, не более	5 А при напряжении не более 250 В переменного тока и cos(φ) > 0,95; 3 А при напряжении не более 30 В постоянного тока	
Допустимый ток нагрузки, не менее	10 мА (при 5 В постоянного тока)	
Электрический ресурс реле, не менее	100000 циклов: 5 А при 250 В переменного тока; 200000 циклов: 3 А, 30 В постоянного тока, резистивная нагрузка	

Таблица 2.11 - Характеристики аналоговых выходов типа «И»

Наименование	Значение
Тип выходного сигнала	Ток
Диапазон генерации тока	420 мА
Напряжение питания	1530 В (питание от токовой петли)
Внешняя нагрузка не более	1 кОм
Предел основной приведенной погрешности	± 0,5 %
Дополнительная приведенная погрешность, вызванная изменением температуры окружающей среды в пределах рабочего диапазона, на каждые 10 градусов	± 0,05 %
Максимальная индуктивная нагрузка, не более	50 мкГн
Выходной импеданс, не менее	10 МОм
Полное время преобразования выходного сигнала	100 мс
Разрядность ЦАП	10 бит
Гальваническая развязка	Есть (индивидуальная)
Электрическая прочность изоляции	2830 B

Таблица 2.12 - Характеристики аналогового выходов типа «У»

Наименование	Значение	
Тип выходного сигнала	Напряжение	
Диапазон генерации напряжения	010 B	
Напряжение питания	1530 В, питание внешнее	
Внешняя нагрузка, не менее	2 кОм	
Предел основной приведенной погрешности	± 0,5 %	
Дополнительная приведенная погрешность, вызванная изменением температуры окружающей среды в пределах рабочего диапазона, на каждые 10 градусов	± 0,05 %	
Полное время преобразования выходного сигнала	100 мс	
Разрядность ЦАП	10 бит	
Гальваническая развязка	Есть (индивидуальная)	
Электрическая прочность изоляции	2830 B	

Таблица 2.13 - Характеристики выходов типа «К»

Наименование	Значение	
Количество выходных устройств	4	
Тип выходного устройства	Оптопара транзисторная <i>n-p-n</i> -типа	
Ток коммутации, не более	200 мА	
Напряжение коммутации, не более	60 B	
Электрическая прочность изоляции	2830 B	

2.2 Условия эксплуатации

Прибор предназначен для эксплуатации в следующих условиях:

- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- температура окружающего воздуха от минус 20 до плюс 55 °C;
- верхний предел относительной влажности воздуха: не более 80 % при +25 °C и более низких температурах без конденсации влаги;
- допустимая степень загрязнения 1 (несущественные загрязнения или наличие только сухих непроводящих загрязнений);
- атмосферное давление от 84 до 106,7 кПа.

По устойчивости к климатическим воздействиям во время эксплуатации прибор соответствует группе исполнения В4 по ГОСТ Р 52931–2008.

По устойчивости к механическим воздействиям во время эксплуатации прибор соответствует группе исполнения N1 по ГОСТ Р 52931–2008 (частота вибрации от 10 до 55 Гц).

По устойчивости к воздействию атмосферного давления прибор относится к группе Р1 по ГОСТ Р 52931–2008.

Прибор отвечает требованиям по устойчивости к воздействию помех в соответствии с ГОСТ 30804.6.2–2013.

По уровню излучения радиопомех (помехоэмиссии) прибор соответствует ГОСТ 30805.22-2013 (для приборов класса A).

Прибор устойчив к прерываниям, провалам и выбросам напряжения питания:

- для переменного тока в соответствии с требованиями ГОСТ 30804.4.11–2013 (степень жесткости PS2);
- для постоянного тока в соответствии с требованиями ГОСТ IEC 61131–2–2012 длительность прерывания напряжения питания до 10 мс включительно, длительность интервала от 1 с и более.

3 Меры безопасности

По способу защиты обслуживающего персонала от поражения электрическим током, прибор относится к классу II ГОСТ IEC 61131–2–2012.

Во время эксплуатации, технического обслуживания и поверки прибора следует соблюдать требования ГОСТ 12.3.019—80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».

Во время эксплуатации прибора открытые контакты клеммника находятся под опасным для жизни напряжением. Прибор следует устанавливать в специализированных шкафах, доступных только квалифицированным специалистам.

Любые подключения к прибору и работы по его техническому обслуживанию следует производить только при отключенном питании прибора и подключенных к нему устройств.

Не допускается попадание влаги на контакты выходного разъема и внутренние электроэлементы прибора. Прибор запрещено использовать в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т. п.

4 Монтаж

4.1 Установка

ОПАСНОСТЬ

Монтаж должен производить только обученный специалист с допуском на проведение электромонтажных работ. Во время монтажа следует использовать средства индивидуальной защиты и специальный электромонтажный инструмент с изолирующими свойствами до 1000 В.

Во время размещения прибора следует учитывать меры безопасности из раздела 3.

Прибор следует монтировать в шкафу, конструкция которого должна обеспечивать защиту от попадания в него влаги, грязи и посторонних предметов.

ПРЕДУПРЕЖДЕНИЕ

Монтировать и подключать следует только предварительно сконфигурированный прибор.

ВНИМАНИЕ

Питание каких-либо устройств от сетевых контактов прибора запрещается.

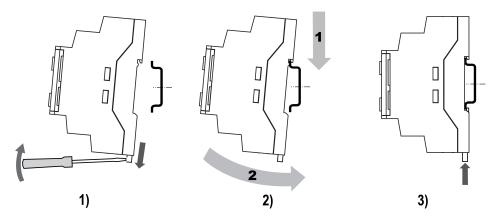


Рисунок 4.1 - Монтаж и демонтаж прибора

Для монтажа прибора на DIN-рейке следует:

- 1. Подготовить на DIN-рейке место для установки прибора в соответствии с размерами прибора (см. рисунок 4.2).
- 2. Вставив отвертку в проушину, оттянуть защелку (см. рисунок 4.1, 1). Прибор установить на DINрейку.
- 3. Прибор прижать к DIN-рейке (см. рисунок 4.1, 2, стрелки 1 и 2). Отверткой вернуть защелку в исходное положение.
- 4. Смонтировать внешние устройства с помощью ответных клеммников из комплекта поставки.

Демонтаж прибора:

- 1. Отсоединить съемные части клемм от прибора (см. раздел 4.2).
- 2. В проушину защелки вставить острие отвертки.
- 3. Защелку отжать, после чего прибор отвести от DIN-рейки.

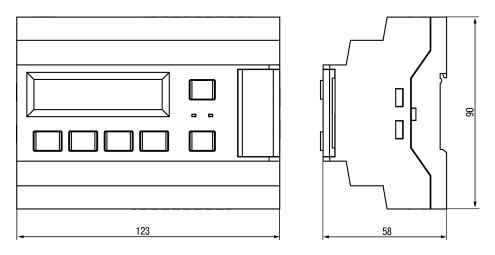


Рисунок 4.2 - Габаритный чертеж прибора

4.2 «Быстрая» замена

Конструкция клемм прибора позволяет оперативно заменить прибор без демонтажа подключенных к нему внешних линий связи.

Последовательность замены прибора:

- 1. Обесточить все линии связи, подходящие к прибору, в том числе линии питания.
- 2. Отделить от прибора съемные части каждой из клемм вместе с подключенными внешними линиями связи с помощью отвертки или другого подходящего инструмента (см. рисунок 4.3).
- 3. Снять прибор с DIN-рейки, на его место установить другой прибор с предварительно удаленными разъемными частями клемм.
- 4. К установленному прибору подсоединить разъемные части клемм с подключенными внешними линиями связи.

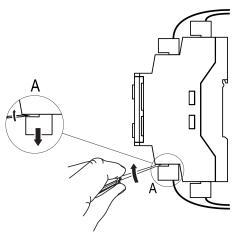


Рисунок 4.3 – Отсоединение съемных частей клемм

5 Подключение

5.1 Рекомендации к подключению

Прибор следует подключать к сети переменного тока от сетевого фидера, не связанного непосредственно с питанием мощного силового оборудования. Во внешней цепи рекомендуется установить выключатель, обеспечивающий отключение прибора от сети.

ВНИМАНИЕ

Питание каких-либо устройств от сетевых контактов прибора запрещается.

Для обеспечения надежности электрических соединений рекомендуется использовать медные многожильные кабели, концы которых перед подключением следует тщательно зачистить и залудить или использовать кабельные наконечники. Жилы кабелей следует зачищать так, чтобы их оголенные концы после подключения к прибору не выступали за пределы клеммника. Сечение жил кабелей должно быть не более 2,5 мм².

Для записи пользовательской программы прибор подключается через интерфейсный порт «ПРОГ.» (Mini-USB) к USB-порту ПК.

ВНИМАНИЕ

Перед подключением разъема USB прибор должен быть обесточен!

Аналоговые входы и интерфейс USB не имеют гальванической развязки между собой. Для безопасной работы с данными портами, подключаемое к ним оборудование должно иметь одинаковый потенциал цепей заземления, или иметь гальваническую изоляцию. Чтобы избежать выхода из строя прибора, перед включением оборудования следует убедиться, что подключаемые к данным портам устройства имеют одинаковый потенциал цепей заземления. Если нет возможности обеспечить данное требование, то не следует подключать устройства к аналоговым входам и USB одновременно. Например, при программировании прибора по USB отключать от аналоговых входов кабели или использовать устройства с гальванической развязкой (устройство гальванической развязки интерфейса USB, ноутбук с питанием от батареи и т. п.).

ПРЕДУПРЕЖДЕНИЕ

Питание датчиков, концевых выключателей и других периферийных устройств, подключаемых к аналоговым входам прибора, должно осуществляться только от источника питания с усиленной изоляцией согласно ГОСТ IEC 61131-2-2012, чтобы исключить появление опасного напряжения на портах прибора.

5.2 Порядок подключения

ВНИМАНИЕ

После транспортировки прибор может быть поврежден. Перед началом работы следует убедиться в целостности (безопасности) доставленного прибора.

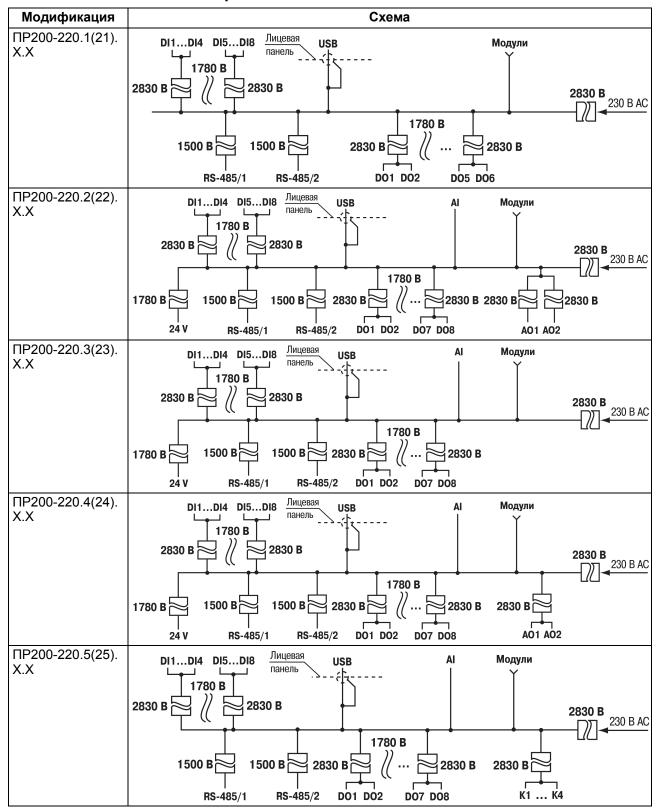
В случае изменения температуры окружающего воздуха с низкой на высокую в приборе возможно образование конденсата. Чтобы избежать выхода прибора из строя рекомендуется выдержать прибор в выключенном состоянии не менее 1 часа.

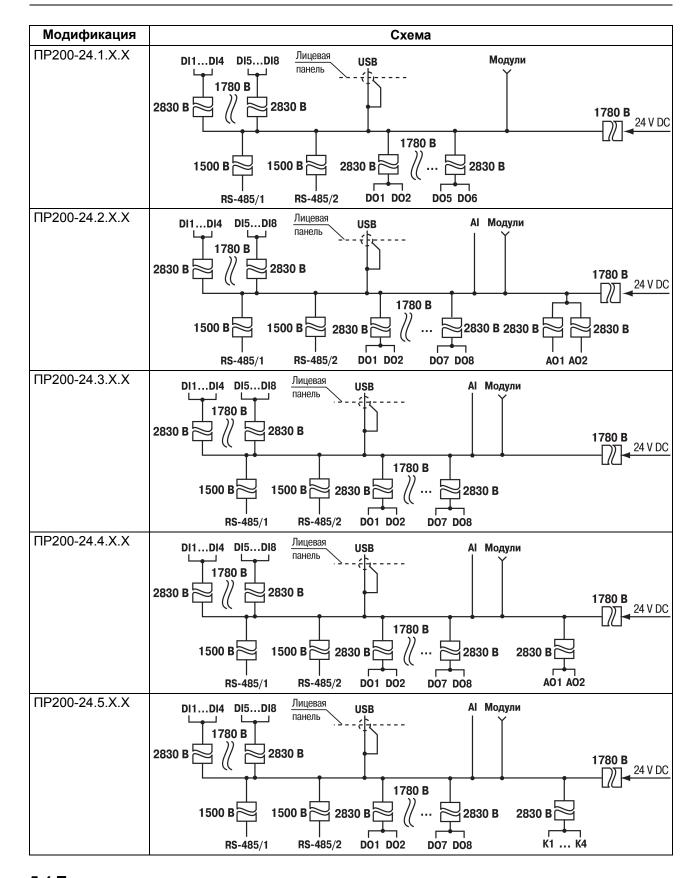
ПРЕДУПРЕЖДЕНИЕ

Перед подачей питания на ПР200-24.X следует проверить правильность подключения напряжения питания и его уровень:

- если напряжение ниже 19 В, то прибор прекращает функционировать, но не выходит из строя, поэтому не гарантируется его работа:
- если напряжение выше 30 В, то прибор может выйти из строя;
- в случае неверного подключения к источнику постоянного напряжения (перепутана полярность) прибор не включится.

Перед подключением прибор следует настроить и запрограммировать (см. раздел 6.1).


Для подключения прибора следует:


- 1. Подсоединить источник питания к съемному клеммнику. Затем съемный клеммник подключить к прибору.
- 2. Подать питание на прибор.
- 3. Убедиться в отсутствии системных ошибок (см. раздел 6.4.2).
- 4. Настроить часы.

- 5. Снять питание.
- 6. Проверить время/дату. В случае сброса часов заменить батарейку (см. раздел 8.4). Если часы работают корректно, то обесточить прибор.
- 7. Подсоединить линии связи «прибор устройства» съемным клеммникам. Затем съемные клеммники подключить к прибору (см. Приложение Описание клеммников).

Если после включения питания выполнение программы не началось, необходимо проверить наличие ее в памяти прибора и следовать инструкциям раздела 6.4.3.

5.3 Схемы гальванической развязки

5.4 Помехи и методы их подавления

На работу прибора могут оказывать влияние внешние помехи:

- возникающие под действием электромагнитных полей (электромагнитные помехи), наводимые на прибор и на линии связи с внешним оборудованием;
- в питающей сети.

Для уменьшения влияния электромагнитных помех рекомендуется:

- надежно экранировать сигнальные линии, экраны следует электрически изолировать от внешнего оборудования на протяжении всей трассы и подсоединить к заземленному контакту щита управления;
- установить прибор в металлическом шкафу, внутри которого не должно быть никакого силового оборудования, корпус шкафа должен быть заземлен.

Для уменьшения помех, возникающих в питающей сети рекомендуется:

- монтируя систему, в которой работает прибор, следует учитывать правила организации эффективного заземления и прокладки заземленных экранов:
 - все заземляющие линии и экраны прокладывать по схеме «звезда» с обеспечением хорошего контакта с заземляемым элементом;
 - заземляющие цепи должны быть выполнены кабелями наибольшего сечения.

Для уменьшения уровня помех можно применять программные фильтры, которые настраивает пользователь по своему усмотрению. Цифровые фильтры доступны для:

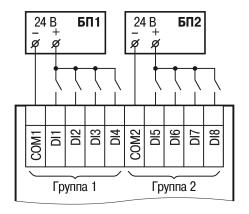
- всех типов аналоговых датчиков;
- цифровых входов с номинальным напряжением 24 В.

ПРИМЕЧАНИЕ

Увеличение значения постоянной времени фильтра аналогового входа замедляет реакцию прибора на быстрые изменения входной величины.

5.5 Подключение датчиков

5.5.1 Общие сведения


ПРЕДУПРЕЖДЕНИЕ

Для защиты входных цепей прибора от возможного пробоя зарядами статического электричества, накопленного на линиях связи «прибор – датчик», перед подключением к клеммнику прибора их жилы следует на 1–2 секунды соединить с винтом функционального заземления (FE) щита.

Во время проверки исправности датчика и линии связи следует отключить прибор от сети питания. Чтобы избежать выхода прибора из строя при «прозвонке» связей следует использовать измерительные устройства с напряжением питания не более 4,5 В. Для более высоких напряжений питания этих устройств отключение датчика от прибора обязательно.

5.5.2 Подключение датчиков с дискретным выходом

5.5.2.1 Подключение дискретных датчиков с выходом типа «сухой контакт»

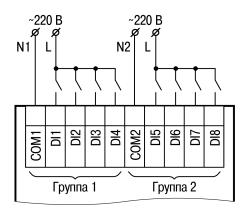


Рисунок 5.1 – Схема подключения дискретных датчиков с питанием 24 В

Рисунок 5.2 – Схема подключения дискретных датчиков с питанием 230 В

5.5.2.2 Подключение трехпроводных дискретных датчиков, имеющих выходной транзистор p-n-p-типа с открытым коллектором

В случае подключения дискретных датчиков можно использовать один и тот же блок питания для питания двух групп входов. Внутри одной группы можно одновременно использовать датчики с выходом типа «сухой контакт» и с выходным транзистором.

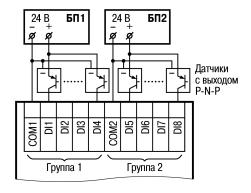


Рисунок 5.3 – Схема подключения датчиков с выходным транзистором р-п-р-типа

5.5.3 Подключение датчиков с аналоговым выходом

5.5.3.1 Общие сведения

ПРЕДУПРЕЖДЕНИЕ

Перед подключением аналоговых датчиков, следует проверить, что вход прибора настроен на аналоговый режим.

В качестве внешнего источника питания для подключенных активных датчиков может быть использован встроенный в прибор источник 24 В.

Режим работы универсального входа переключается в OwenLogic и на плате прибора (см. раздел 6.2.1).

ПРЕДУПРЕЖДЕНИЕ

Важно обеспечить соответствие между схемой подключения и установкой перемычек (джамперов) на средней плате аналоговых входов, иначе возможно повреждение прибора.

ПРЕДУПРЕЖДЕНИЕ

Следует обеспечить соответствие между схемой подключения датчика к клеммам входа и настройкой режима работы данного входа в OwenLogic.

5.5.3.2 Подключение активного датчика с токовым выходом

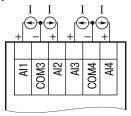


Рисунок 5.4 - Схема подключения активного датчика с выходом типа «Ток 4...20 мА»

5.5.3.3 Подключение активных датчиков с выходом типа «Напряжение 0...10 В»

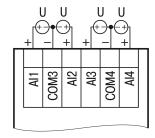


Рисунок 5.5 - Схема подключения активных датчиков с выходом типа «Напряжение 0...10 В»

5.5.3.4 Подключение резистивного датчика

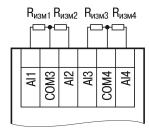


Рисунок 5.6 – Схема подключения резистивного датчика с диапазоном 0...4000 Ом

5.5.3.5 Смешанное подключение аналоговых датчиков

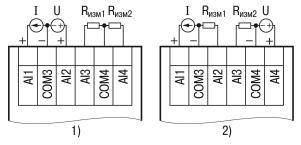


Рисунок 5.7 – Схемы подключения датчиков различного типа

5.5.3.6 Подключение дискретных датчиков

ПРЕДУПРЕЖДЕНИЕ

Перед подключением дискретных датчиков следует проверить, что вход прибора настроен на дискретный режим.

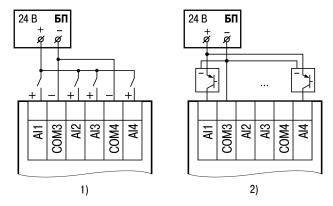


Рисунок 5.8 – Схема подключения к аналоговым входам, работающим в дискретном режиме: 1) датчиков типа «сухой» контакт, 2) трехпроводных дискретных датчиков, имеющих выходной транзистор p-n-p-типа с открытым коллектором

i

ПРИМЕЧАНИЕ

Контакты СОМ3 и СОМ4 объединены электрически внутри прибора.

5.6 Подключение нагрузки к ВЭ

5.6.1 Подключение нагрузки к ВЭ типа «К»

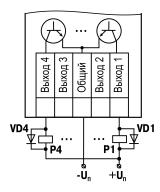


Рисунок 5.9 - Схема подключения нагрузки к ВЭ типа «К»

Схема подключения нагрузки к ВЭ приведена на рисунке 5.9. Чтобы транзистор не вышел из строя изза большого тока самоиндукции, следует установить диоды VD1...VD4 параллельно обмотке внешних реле P1...P4.

ПРЕДУПРЕЖДЕНИЕ

Характеристики низковольтных реле P1...P4: напряжение не более 50 В при токе не более 200 мА.

5.6.2 Подключение нагрузки к ВЭ типа «Р»

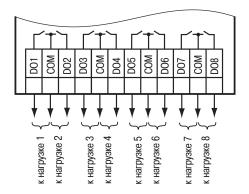


Рисунок 5.10 - Схема подключения нагрузки к ВЭ типа «Р»

5.6.3 Подключение нагрузки к ВЭ типа «И»

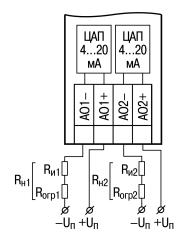


Рисунок 5.11 - Схема подключения нагрузки к ВЭ типа «И»

Для работы ВЭ следует использовать внешний источник питания постоянного тока. Сопротивление нагрузки $R_{\rm H}$ зависит от напряжения источника питания $U_{\rm n}$. Мощность, выделяемая на узле ($P = U_{\rm n} \cdot I$) распределяется между аналоговым выходом и сопротивлением нагрузки $R_{\rm H}$. Если сопротивление нагрузки $R_{\rm H}$ будет слишком мало, то на аналоговом выходе выделится большая мощность, и он может выйти из строя. ВЭ аналогового выхода при работе в широком температурном диапазоне не должен рассеивать больше 0,2 Вт мощности, чтобы избежать перегрева. Если сопротивление нагрузки $R_{\rm H}$ будет слишком велико, то на нем упадет большое напряжение и аналоговый выход не получит необходимого напряжения питания. Сопротивление нагрузки $R_{\rm H}$ следует выбирать из графика, изображенного на рисунке ниже. Допустимое отклонение – 10 %. Если для измерения токового сигнала используется измерительный шунт $R_{\rm u}$, и его номинал меньше необходимого сопротивления нагрузки, то следует использовать добавочный ограничивающий резистор $R_{\rm orp}$, сопротивление которого вычисляется из соотношения:

$$R_{\text{orp}} = R_H - R_{\text{\tiny M}}$$

Типовые соотношения:

$$U_{\Pi}=12~B$$

$$U_{\Pi}=24~B$$

$$R_{H}=R_{\text{u}}=100~\text{Om}$$

$$R_{H}=700~\text{Om}$$

$$R_{\text{u}}=100~\text{Om}$$

$$R_{\text{orp}}=620~\text{Om}$$

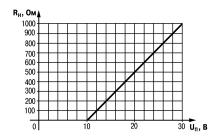


Рисунок 5.12 – График зависимости R_H (U_{Π})

ВНИМАНИЕ

Напряжение источника питания ЦАП не должно быть более 30 В.

В качестве внешнего источника питания можно использовать встроенный в прибор источник 24 В.

Пример

Напряжение питания аналогового выхода 24 В, установлен ток 20 мА. При использовании сопротивления нагрузки 700 Ом на нем упадет напряжение 14 В, и выделится мощность 0,28 Вт. Остальное напряжение 10 В упадет на ВЭ аналогового выхода, и на нем выделится мощность 0,2 Вт. При использовании сопротивления нагрузки 16 Ом на нем упадет (24 – 0,02 · 0,02 · 16) = 0,47 мощности.

5.6.4 Подключение нагрузки к ВЭ типа «У»

Для работы ЦАП 0...10 В используется внешний источник питания постоянного тока с номинальным значением напряжения U_n в диапазоне 15-30 В. Сопротивление нагрузки R_h , подключаемой к ЦАП, должно быть диапазоне от 2 до 10 кОм. Для питания выхода можно использовать встроенный источник питания 24 В.

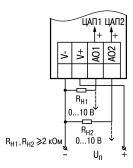


Рисунок 5.13 - Схема подключения нагрузки к ВЭ типа «У»

ВНИМАНИЕ

Напряжение источника питания ЦАП не должно быть более 30 В.

5.7 Подключение модуля расширения

ВНИМАНИЕ

Подключение модулей к прибору и подключение устройств к модулям следует выполнять только при отключенном питании всех устройств.

Модуль подключается к прибору с помощью шлейфа длиной 4,5 см из комплекта поставки модуля. После подключения шлейф следует поместить в специальное углубление под крышкой модуля (рисунок 5.14, стрелка 1), тем самым позволяя придвинуть модуль вплотную к головному устройству (рисунок 5.14, стрелка 2).

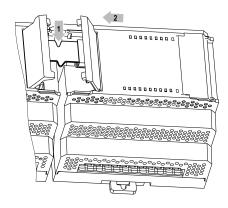


Рисунок 5.14 – Укладка шлейфа в углубление

Модули подключаются только последовательно. Ближайший модуль к головному устройству всегда будет располагаться в слоте 1 (см. раздел 7.2.1). Подключение модуля в слот 2 без модуля в слоте 1 невозможно.

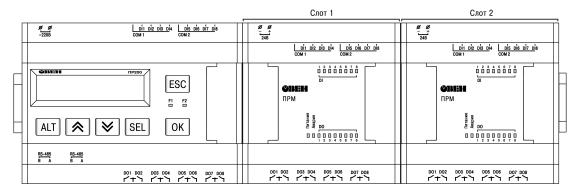


Рисунок 5.15 – Расположение модулей расширения на шине

5.8 Подключение к сети RS-485

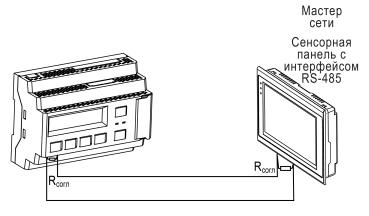


Рисунок 5.16 - Типовая схема подключения для ПР200 в режиме Slave

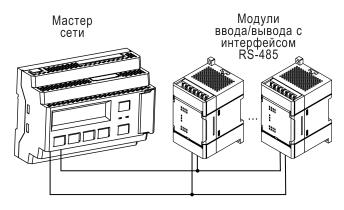


Рисунок 5.17 - Типовая схема подключения для ПР200 в режиме Master

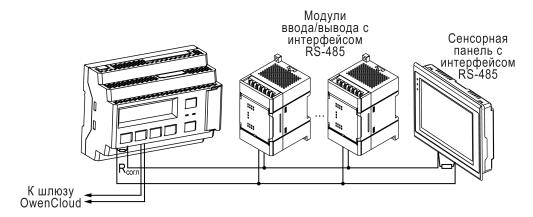


Рисунок 5.18 - Смешанная схема подключения

5.9 Подключение к ПК

№ ВНИМАНИЕ

Перед подключением разъема USB прибор должен быть обесточен!

Для подключения прибора к ПК следует:

- 1. Подключить прибор к ПК (см. рисунок 5.19);
- 2. Подать питание на прибор;

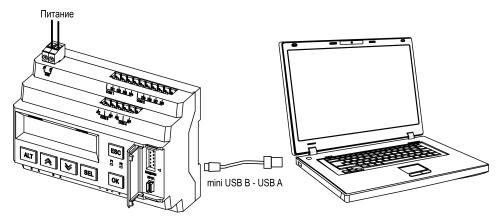


Рисунок 5.19 – Схема подключения прибора к ПК

6 Настройка и программирование

6.1 Общие сведения

Перед использованием прибор следует запрограммировать, т. е. создать пользовательскую программу и загрузить в прибор. Пользовательская программа записывается в энергонезависимую память прибора и запускается после включения питания или перезагрузки прибора.

Прибор программируется в OwenLogic или с помощью специально созданного исполняемого файла (см. Мастер тиражирования в справке OwenLogic). Создание пользовательской программы, настройка прибора и пр. описаны в справке OwenLogic. В процессе программирования создается алгоритм работы прибора и задаются параметры, необходимые для эксплуатации. Перед эксплуатацией следует настроить:

- сетевой интерфейс;
- параметры экрана и часы реального времени.

Параметры экрана, сетевого интерфейса и часы реального времени настраиваются в OwenLogic или с лицевой панели прибора. Значения этих параметров записываются в энергонезависимую память прибора и сохраняются в случае отключения питания.

6.2 Настройка универсальных входов (AI1...AI4)

ПРЕДУПРЕЖДЕНИЕ

Режим работы входа настраивается в OwenLogic и перемычками на верхней плате.

ПРЕДУПРЕЖДЕНИЕ

[/] |Некорректная установка перемычек может привести к выходу из строя универсальных входов.

Универсальные входы прибора измеряют:

- ток в диапазоне от 4 до 20 мА;
- напряжение в диапазоне от 0 до 10 В;
- сопротивление в диапазоне 0...4000 Ом.

Для выбора сигнала датчика следует задать параметр «Сигнал датчика» (0...10 В, 4...20 мА, 0... 4000 Ом) в OwenLogic и сконфигурировать аппаратную часть с помощью перемычек согласно выбранному режиму работы. Установка перемычек для выбора режима работы описана в разделе 6.2.1.

ОПАСНОСТЬ

Подача сигналов, не соответствующих аппаратной конфигурации каналов, приводит к выходу из строя прибора. Перед включением следует проверить конфигурацию входа.

Чтобы попасть в меню настройки универсальных входов в программе OwenLogic следует перейти во вкладку Прибор/Настройка прибора/Входы/Аналоговые (см. рисунок 6.1).

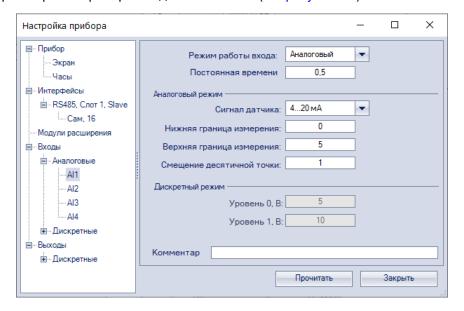


Рисунок 6.1 – Меню настройки прибора

Для быстрого доступа к наиболее часто используемым настройкам входа следует выделить элемент входа и в свойствах задать необходимые параметры (см. рисунок 6.2).

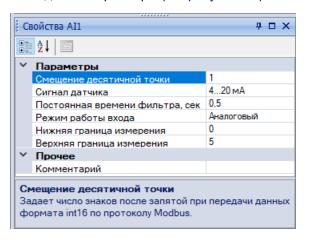


Рисунок 6.2 – Меню параметров

Универсальный вход имеет следующие настройки:

- Режим работы входа позволяет выбрать режим работы входа: аналоговый или дискретный;
- Постоянная времени фильтра (см. раздел 6.2.4) настраивается постоянная времени фильтрации встроенного цифрового фильтра;
- настройки, доступные только в режиме аналогового входа:
 - Сигнал датчика выбор типа входного сигнала;
 - Нижняя граница измерения задает минимальный уровень измеренного сигнала;
 - Верхняя граница измерения задает максимальный уровень измеренного сигнала;
 - Смещение десятичной точки задает смещение десятичной точки при опросе по протоколу Modbus.
- настройки, доступные только в режиме дискретного входа:
 - Уровень 0 задает границу определения «логического нуля»;
 - Уровень 1 задает границу определения «логической единицы».

6.2.1 Настройка режима работы входа

ПРЕДУПРЕЖДЕНИЕ

Чтобы избежать порчи прибора, любые операции по разборке прибора должен выполнять обученный специалист.

ПРИМЕЧАНИЕ

По умолчанию все универсальные входы прибора сконфигурированы для работы с сигналами 4...20 мА.

Для настройки режима работы входа следует:

- 1. Отключить питание прибора.
- 2. Снять верхнюю крышку (см. раздел 8.3).
- 3. Тонким инструментом (например, пинцетом) выставить нужную конфигурацию перемычками.
- 4. Надеть верхнюю крышку обратно.

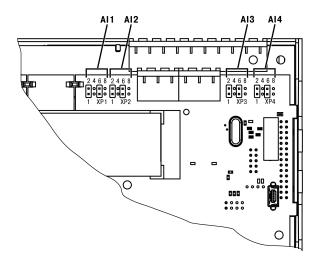


Рисунок 6.3 - Схема расположения перемычек

Варианты установки перемычек для задания режима работы аналогового входа (на примере входа Al1, разъем XP1) изображены на рисунке ниже.

XP1	XP1	XP1	XP1
2 4 6 8	2 4 6 8	2 4 6 8	2 4 6 8
	0 0 0 0		000
000	0 0 0		000
1 3 5 7	1 3 5 7	1 3 5 7	1 3 5 7
1)	2)	3)	4)

Рисунок 6.4 – Схема задания диапазона измерения перемычками на плате: 1) режим измерения напряжения 0...10 В, 2) режим измерения тока 4...20 мА, 3) режим дискретного входа, 4) режим измерения сопротивления 0...4000 Ом

Для входов AI2, AI3, AI4 (разъемы XP2, XP3, XP4 соответственно) схема аналогична.

6.2.2 Работа входа в аналоговом режиме

Для измерения токового сигнала 4...20 мА в прибор для каждого канала встроен шунтирующий резистор номиналом 121 Ом. В приборе масштабируются шкалы измерения для каналов «0...10 В» и «4... 20 мА», после чего контролируемые физические величины отображаются непосредственно в единицах их измерения (атмосферах (кг/см²), кПа и т. д.). Для каждого такого датчика следует установить диапазон измерения:

- нижняя граница диапазона измерения задается параметром «нижняя граница измерения» и соответствует минимальному уровню выходного сигнала датчика;
- верхняя граница диапазона измерения задается параметром «верхняя граница измерения» и соответствует максимальному уровню выходного сигнала датчика.

Для сигнала 4... 20 мА параметр «положение десятичной точки» используется во время обмена по протоколу ModBus и определяет точность передаваемого значения в формате целого числа.

Пример

Используется датчик с выходным током 4...20 мА, контролирующий давление в диапазоне 0...25 атм, в параметре «нижняя граница измерения» задается значение «0,00», а в параметре «верхняя граница измерения» — значение «25,00» (см. рисунок 6.5). Теперь значения на аналоговом входе будут измеряться в атмосферах.

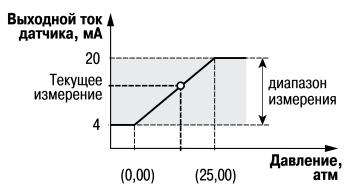


Рисунок 6.5 - Пример задания диапазона измерения

Значения в приборе представлены в абсолютном виде (float32). Важно отметить, что сопротивление измеряется по двухпроводной схеме, поэтому во время подключения датчиков сопротивление проводов вносит дополнительную погрешность измерения. Размер дополнительной погрешности зависит от длины и типа проводов подключаемого датчика, и коррекцию можно предусмотреть в пользовательской программе.

6.2.3 Работа входа в дискретном режиме

Вход работает в режиме компаратора. Уровень «логического нуля» — 0...5 В, уровень «логической единицы» — 10...30 В (см. рисунок 6.6).

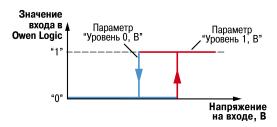


Рисунок 6.6 - Работа универсального входа в дискретном режиме

6.2.4 Входной цифровой фильтр

Влияние внешних помех ослабляются с помощью цифрового фильтра сигнала с целью устранения шумовых составляющих сигнала.

Основной характеристикой сглаживающего фильтра является «**Постоянная времени фильтра**» – интервал, в течение которого сигнал достигает 0,63 от значения каждого измерения. Постоянная времени фильтра задается в секундах параметром «**постоянная времени фильтра**» для каждого входа отдельно (диапазон возможных значений: от 0,01 до 60 с – с дискретностью 0,001 с).

Следует помнить, что увеличение значения «постоянной времени фильтра» улучшает помехозащищенность канала измерения, но одновременно увеличивает его инерционность, т. е. реакция прибора на быстрые изменения входной величины замедляется.

6.3 Аналоговые выходы АО1 и АО2

В зависимости от модификации прибор оснащается двумя аналоговыми выходами типа «И» с диапазоном 4... 20 мА или типа «У» с диапазоном 0... 10 В. Для управления выходным элементом аналогового типа следует подавать значение в формате «с плавающей запятой» (float32) в диапазоне от 0,0 до 1,0.

Пример

Во время подачи на выход значения «0,5», выходной ток будет равен 12 мА для выхода типа «И».

Пример

Во время подачи на выход значения «0,5», выходное напряжение будет равно 5 В для выхода типа «У».

6.4 Режимы работы

Пользовательская программа начинает выполняться сразу после подачи напряжения питания на запрограммированный прибор. По включению напряжения питания, перед началом выполнения пользовательской программы, прибор выполняет настройку аппаратных ресурсов и самотестирование. Если самотестирование прошло успешно, прибор переходит в Рабочий режим. В противном случае, прибор переходит в Аварийный режим.

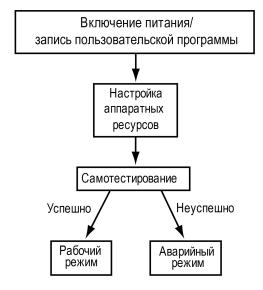


Рисунок 6.7 – Алгоритм запуска прибора

6.4.1 Рабочий режим

В рабочем режиме прибор повторяет следующую последовательность (рабочий цикл):

- начало цикла;
- чтение состояния входов;
- выполнение кода пользовательской программы;
- запись состояния выходов;
- переход в начало цикла.

В начале цикла прибор считывает состояния входов и копирует считанные значения в область памяти входов. Далее выполняется код программы, которая работает с копией значений входов.

6.4.2 Аварийный режим

В случае возникновения аварийной ситуации прибор переходит в Аварийный режим.

В таблице ниже представлены примеры аварийных ситуаций и рекомендации по их устранению.

Таблица 6.1 – Неисправности и способы их устранения

Индикация на дисплее	Причина	Рекомендации по устранению
Программа Logic	В прибор записана некорректная пользовательская программа	Обновить пользовательскую программу в OwenLogic
Повреждена		, , ,
Программа Logic	Ошибка чтения Retain- переменных	
Свой памяти		
Программа Logic	Установлена перемычка «Run- STOP» (см. раздел 6.4.3).	Удалить перемычку «Run- STOP», перезагрузить прибор
Заблокирована	Пользовательская программа не выполняется	7 1 13 1 1 1 1

Продолжение таблицы 6.1

Индикация на дисплее	Причина	Рекомендации по устранению	
Светодиод F2 светится	Внутреннее ПО повреждено	Самостоятельно обновить	
Светодиод F2 мигает		встроенное ПО прибора, либо обратиться в сервисный центр	
Программа Logic Остановлена	Пользовательская программа остановлена	Запустить программу через меню прибора, перезагрузить прибор	

6.4.3 Выбор специальных режимов работы перемычками на плате

ПРЕДУПРЕЖДЕНИЕ

Чтобы избежать порчи прибора, любые операции по разборке прибора должен выполнять обученный специалист.

Для доступа к разъему XP2 и/или XP3 следует снять крышку прибора (см. раздел 8.3). Замыкание контактов разъема переводит прибор в один из специальных режимов работы.

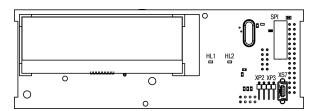


Рисунок 6.8 – Вид на разъем ХР2

Установка перемычки на разъем XP2 активирует режим **Run-STOP**. Данный режим используется для остановки пользовательской программы, если она повреждена, либо приводит к нестабильной работе прибора и не позволяет перезаписать пользовательскую программу в нормальном режиме. В режиме **Run-STOP** можно записать новую пользовательскую программу.

В данном режиме прибор можно использовать как **Modbus slave** модуль ввода/вывода. Для данного режима следует предварительно настроить интерфейс связи в режим **Slave**. В данном режиме доступен опрос входов и запись выходов, но сетевые переменные недоступны.

Установка перемычки на разъем XP3 активирует режим **Down.Mode**. Данный режим используется, если произошла ошибка во время обновления программного обеспечения (отключение питания, пропадание связи). В режиме **Down. Mode** можно принудительно обновить встроенное ПО. Порядок принудительного обновления встроенного ПО подробно описан справке OwenLogic.

ВНИМАНИЕ

Одновременное замыкание разъемов ХР2 и ХР3 приведет к неработоспособности прибора!

6.5 Сетевой интерфейс

6.5.1 Общие сведения

Для минимизации времени получения данных со всех устройств рекомендуется:

- если одно или несколько подчиненных устройств не подключены или недоступны, то
 рекомендуется предусмотреть в программе блокировку опроса этих устройств или сократить до
 минимума параметр «Таймаут ответа» для этих устройств. В ином случае время опроса будет
 расти пропорционально количеству неподключенных устройств и величине установленного
 параметра «Таймаут ответа» для этих устройств;
- во время установки параметра «Интервал между запросами» следует учитывать количество подчиненных устройств и общее количество запросов. Если время обработки всех запросов занимает больше времени, чем установлено параметром «Интервал между запросами», то данный параметр будет игнорироваться.

Для организации обмена данными в сети через интерфейс RS-485 необходим Мастер сети. Основная функция Мастера сети – инициировать обмен данными между Отправителем и Получателем данных.

В качестве Мастера сети можно использовать:

• ПК с подключенным адаптером АС4;

- приборы OBEH с интерфейсом RS-485, например ПЛК110 или иные программируемые контроллеры;
- контроллеры других фирм с возможностью работы в режиме Мастера сети RS-485.

В приборе, в зависимости от модификации, устанавливается до двух интерфейсных плат с модулями интерфейсов RS-485 для организации работы по стандартному протоколу ModBus в режиме Master или Slave. Если установлена одна плата, то можно заказать дополнительную интерфейсную плату ПР-ИП485. Инструкция по установке интерфейсной платы приведена в разделе 8.5.

Для работы прибора в сети RS-485 следует настроить интерфейс в OwenLogic. Также сетевые настройки можно задать с помощью меню прибора.

Прибор работает по протоколу Modbus по одному режимов обмена данными: Modbus-RTU (Master/Slave) или Modbus-ASCII (Master/Slave). Режим работы Master/Slave можно выбрать в настройках прибора в OwenLogic.

С помощью установки перемычек на плате ПР-ИП485 можно подключить или отключить подтягивающие резисторы линий связи A и B. Подтягивающие резисторы устанавливаются для задания определенного состояния линий связи, когда в сети RS-485 нет передачи. Резисторы устанавливаются в одном месте сети RS-485, как правило, возле Мастера сети.

Заводская установка - подтягивающие резисторы отключены.

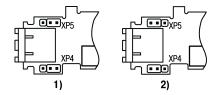


Рисунок 6.9 – Положение перемычек на плате ПР-ИП485: 1) подтягивающие резисторы подключены, 2) подтягивающие резисторы отключены

На форуме компании OBEH размещены компоненты, упрощающие написание программы пользователя:

- макросы http://www.owen.ru/forum/showthread.php?t=25067;
- шаблоны сетевых устройств http://www.owen.ru/forum/showthread.php?t=25978.

6.5.2 Режим Master

Прибор можно перевести в режим Master с помощью OwenLogic.

На линии связи допускается наличие только одного устройства в режиме Master.

В режиме Master прибор поддерживает следующие возможности:

- чтение по таймеру;
- чтение/запись по событию;
- запись по изменению (используется по умолчанию).

Прибор поддерживает управление до 16 устройствами по каждому интерфейсу связи. Каждое устройство поддерживает до 256 переменных. Допускается использование одинаковых адресов и имен переменных для каждого устройства.

6.5.3 Режим Slave

Прибор работает по протоколу Modbus по одному из режимов обмена данными: Modbus-RTU (Slave) или Modbus-ASCII (Slave). Прибор автоматически распознает режим обмена.

Прибор в режиме Slave поддерживает следующие функции:

- чтение значений из нескольких регистров флагов;
- чтение значений из нескольких регистров хранения;
- чтение значений из нескольких регистров ввода.

Прибор переводится в режим Slave с помощью OwenLogic.

Регистры прибора, доступные по протоколу Modbus, приведены в разделе 6.5.4.

6.5.4 Карта регистров Modbus

Таблица 6.2 – Регистры, доступные по протоколу Modbus

Наименова- ние модификации	Параметр	Тип переменной (тип функции ModBus)	Адреса регистров ModBus (hex)	Адреса регистров ModBus (dec)	Тип до- ступа
		Дискретные вх	оды		
Все модификации	Дискретные входы (входы DI1DI8)	bit (01, 02)	1000–1007	4096–4103	R
		int16 (03, 04)	100	4096	R
	Сете	вые и служебные г	теременные		
Все модификации	Сетевые переменные	bit (01, 02, 05, 0F)	2000–23F0	8192–9200	RW
		int16 (03, 04, 06, 10)	200–23F	512–575	RW
Все модификации	Секунды	int16 (03, 04, 06, 10)	400	1024	RW
	Минуты	int16 (03, 04, 06, 10)	401	1025	RW
	Часы	int16 (03, 04, 06, 10)	402	1026	RW
	Число	int16 (03, 04, 06, 10)	403	1027	RW
	Месяц	int16 (03, 04, 06, 10)	404	1028	RW
Год	Год	int16 (03, 04, 06, 10)	405	1029	RW
	День недели	int16 (03, 04)	406	1030	RW
	Неделя в месяце	int16 (03, 04)	407	1031	RW
	Неделя в году	int16 (03, 04)	408	1031	RW
		Аналоговые вх	оды		
(22).X.X,	Универсальный вход № 1 (число с плавающей точкой)	float32 (03, 04)	B00, B01	2816, 2817	R
	Универсальный вход № 2 (число с плавающей точкой)	float32 (03, 04)	B02, B03	2818, 2819	R
	Универсальный вход № 3 (число с плавающей точкой)	float32 (03, 04)	B04, B05	2820, 2821	R
	Универсальный вход № 4 (число с плавающей точкой)	float32 (03, 04)	B06, B07	2822, 2823	R
	Универсальный вход № 1 (целое число = результат измерения × 10 ^{dp})	int16 (03, 04)	B80	2944	R
	Универсальный вход № 2 (целое число = результат измерения × 10 ^{dp})	int16 (03, 04)	B81	2945	R

Продолжение таблицы 6.2

Параметр	Тип переменной (тип функции ModBus)	Адреса регистров ModBus (hex)	Адреса регистров ModBus (dec)	Тип до- ступа
Универсальный вход № 3 (целое число = результат измерения × 10 ^{dp})	int16 (03, 04)	B82	2946	R
Универсальный вход № 4 (целое число = результат измерения × 10 ^{dp})	int16 (03, 04)	B83	2947	R
Смещение десятичной точки № 1 (dp)	int16 (03, 04)	BC0	3008	R
Смещение десятичной точки № 2 (dp)	int16 (03, 04)	BC1	3009	R
Смещение десятичной точки № 3 (dp)	int16 (03, 04)	BC2	3010	R
Смещение десятичной точки № 4 (dp)	int16 (03, 04)	BC3	3011	R
Универсальный вход AI1 (дискретный режим)	bit (01, 02)	B800	47104	R
Универсальный вход AI2 (дискретный режим)	bit (01, 02)	B810	47120	R
Универсальный вход AI3 (дискретный режим)	bit (01, 02)	B820	47220	R
Универсальный вход AI4 (дискретный режим)	bit (01, 02)	B830	47320	R
	Выходы			
П а			0.7	DW
(Q1Q6, F1, F2)	(01, 02)			RW
	(03, 04)	O		IXVV
Дискретные выходы (Q1Q8, F1, F2)	bit (01, 02)	0–9	0–9	RW
	int16 (03, 04)	0	0	RW
Дискретные выходы (Q1Q8, F1, F2,	bit (01, 02)	0–D	0–13	RW
K1K4)	int16 (03, 04)	0	0	RW
	Универсальный вход № 3 (целое число = результат измерения × 10 ^{dp}) Универсальный вход № 4 (целое число = результат измерения × 10 ^{dp}) Смещение десятичной точки № 1 (dp) Смещение десятичной точки № 2 (dp) Смещение десятичной точки № 3 (dp) Смещение десятичной точки № 4 (dp) Универсальный вход А11 (дискретный режим) Универсальный вход А12 (дискретный режим) Универсальный вход А13 (дискретный режим) Универсальный вход А14 (дискретный режим) Универсальный режим) Универсальный вход А14 (дискретный режим) Одискретный режим) Дискретные выходы (Q1Q8, F1, F2)	универсальный вход № 3 (целое число = результат измерения × 10 ^{dp}) Универсальный вход № 4 (целое число = результат измерения × 10 ^{dp}) Смещение десятичной точки № 1 (dp) Смещение десятичной точки № 2 (dp) Смещение десятичной точки № 3 (dp) Смещение десятичной точки № 3 (dp) Смещение десятичной точки № 4 (dp) Универсальный вход Аl1 (дискретный режим) Универсальный вход Аl2 (дискретный режим) Универсальный вход Аl3 (дискретный режим) Универсальный вход Аl3 (дискретный режим) Универсальный вход Аl4 (дискретный режим) Универсальный вход Аl4 (дискретный режим) Универсальный вход Аl4 (дискретный режим) Одискретный режим) Одискретные выходы (дот, 02) Дискретные выходы (дот, 02)	Универсальный вход № 3 (целое число = результат измерения × 10 ⁴⁰ р) int16 (03, 04) B82 Универсальный вход № 4 (целое число = результат измерения × 10 ⁴⁰ р) int16 (03, 04) B83 Универсальный вход № 4 (целое число = результат измерения × 10 ⁴⁰ р) int16 (03, 04) BC0 Смещение десятичной точки № 1 (dp) int16 (03, 04) BC1 Смещение десятичной точки № 2 (dp) int16 (03, 04) BC2 Смещение десятичной точки № 4 (dp) int16 (03, 04) BC3 Универсальный вход Аl1 (01, 02) (дискретный режим) bit (01, 02) B800 Универсальный вход Al2 (дискретный режим) bit (01, 02) B820 Универсальный вход Al3 (дискретный режим) bit (01, 02) B820 Универсальный вход Al4 (дискретный режим) bit (01, 02) B830 Дискретные выходы (01, 02) int16 (03, 04) 0-7 Дискретные выходы (01, 02) bit (01, 02) 0-7 Дискретные выходы (01, 02) bit (01, 02) 0-9 Дискретные выходы (01, 02) bit (01, 02) 0-9 Дискретные выходы (02, 03, 04) bit (03, 04) 0-9 Дискретные выходы (03, 04) bit (03, 04)	Универсальный вход № 3 (целое число – результат измерения × 10 ⁴⁰) int16 (03, 04) B82 2946 Универсальный вход № 4 (целое число – результат измерения × 10 ⁴⁰) int16 (03, 04) B83 2947 Универсальный вход № 4 (целое число – результат измерения × 10 ⁴⁰) int16 (03, 04) BC0 3008 Смещение десятичной точки № 1 (dp) int16 (03, 04) BC1 (03, 04) 3009 Смещение десятичной точки № 2 (dp) int16 (03, 04) BC2 (04) 3010 Смещение десятичной точки № 3 (dp) int16 (03, 04) BC2 (04) 3010 Смещение десятичной точки № 3 (dp) int16 (03, 04) BC3 (04) 3011 Универсальный вход АН (дискретный режим) bit (01, 02) B800 (01, 02) 47104 Универсальный вход АН (дискретный режим) bit (01, 02) B820 (01, 02) 47220 Универсальный вход АН (дискретный режим) bit (01, 02) B830 (01, 02) 47320 Универсальный вход АН (дискретные выходы (01, 02) bit (01, 02) 0-7 (0-7) 0-7 Дискретные выходы (01, 02) bit (01, 02) 0-9 (0-9) 0-9 Дискретные выходы (01, 02, 03, 64) bit (03, 04) 0-0-0<

Продолжение таблицы 6.2

Наименова- ние модификации	Параметр	Тип переменной (тип функции ModBus)	Адреса регистров ModBus (hex)	Адреса регистров ModBus (dec)	Тип до- ступа
ПР200-220.2 (22).X.X, ПР200-220.4 (24).X.X	Выходной элемент № 1 (мощность, число с плавающей точкой, 0,0–1,0)	float32 (03, 04)	A00, A01	2560, 2561	RW
	Выходной элемент № 2 (мощность, число с плавающей точкой, 0,0–1,0)	float32 (03, 04)	A02, A03	2562, 2563	RW
	Выходной элемент № 1 (мощность, целое число, 0–10000)*	int16 (03, 04)	0x0A80	2688	RW
	Выходной элемент № 2 (мощность, целое число, 0–10000)*	int16 (03, 04)	A81	2689	RW

ПРЕДУПРЕЖДЕНИЕ
* Положение десятичной точки для выходов всегда равно «4» и не меняется.

7 Эксплуатация

7.1 Управление и индикация

На лицевой панели прибора расположены элементы индикации и управления.

Рисунок 7.1 – Лицевая панель прибора (крышка отсека подключения модулей условно не показана)

Под крышкой на лицевой панели расположены:

- разъем «МОДУЛИ» (тип MIMS-10-TR-U) для подключения модулей расширения (не входят в комплект поставки);
- разъем «ПРОГ.» (тип mini-USB) для программирования прибора. Прибор следует подключать к ПК с кабелем USB A mini-USB B.

Таблица 7.1 – Назначение кнопок

Кнопка	Назначение
	Перемещение по меню/изменение значения
ALT	Применяется в комбинациях с другими кнопками
SEL	Выбор параметра/сохранение изменения
ESC	Отмена изменения (сброс до первоначального значения)/выход из режима редактирования
OK	Применение изменения
ESC	Выход/отмена
ALT + OK	Вход в основное меню
ALT + SEL	Меню аварий
ALT + ⊗ или ALT + ⊗	Изменение положения курсора/перемещение по разрядам

7.2 Работа с меню

В приборе предусмотрены меню пользователя и системное меню.

Меню пользователя создается в OwenLogic с помощью «Менеджера экранов». Переходы могут осуществляться с помощью кнопок или по изменению переменной. Системное меню присутствует в приборе всегда, даже если в него не записана пользовательская программа. Принципы работы с меню пользователя и с системным меню одинаковы.

Работа с меню возможна в следующих режимах:

- отображения;
- редактирования.

В режиме отображения можно просматривать параметры прибора или меню пользователя.

В режиме редактирования можно редактировать параметры прибора в системном меню или пользовательскую программу с лицевой панели без остановки работы прибора. При повторном входе в режим редактирования выбирается последний редактируемый элемент.

7.2.1 Системное меню

Системное меню прибора доступно в случае отсутствия пользовательской программы в памяти прибора и с любого экрана программы. Для вызова системного меню следует удерживать кнопку [ALT] в течение трех секунд. Для выхода из системного меню следует удерживать кнопку [ESC] в течение трех секунд.

В системном меню прибора представлена информация:

- имя прибора;
- версия встроенного ПО;
- время цикла;
- состояние входов/выходов;
- настройки и режим работы интерфейсов RS-485;
- просмотр подключенных модулей;
- пароль от системного меню.

С помощью системного меню можно настроить:

- параметры входов;
- экран (подсветка, яркость/контраст);
- интерфейсы RS-485;
- часы;
- запуск/остановку программы;
- задать пароль.

В системном меню можно остановить выполнение пользовательской программы, если это необходимо. Программа будет остановлена после перезагрузки прибора. В режиме остановленной пользовательской программы все параметры прибора доступны по сети RS-485 (режим Slave) и через меню прибора.

Вход в меню можно защитить паролем, который задается в системном меню с лицевой панели прибора. В случае потери пароля, восстановить его возможно только в сервисном центре.

Структура системного меню приведена на рисунке ниже.

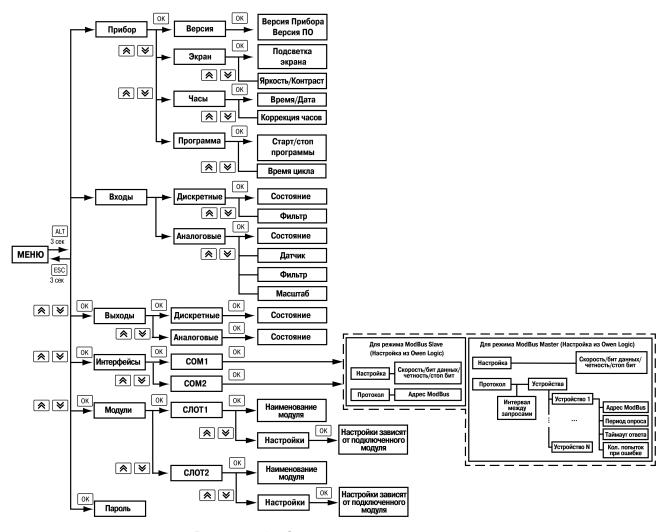


Рисунок 7.2 - Структура системного меню

Таблица 7.2 - Описание пунктов системного меню

Элемент	Описание						
	Входы						
Дискретные	Состояние дискретных входов отображается в виде побитового состояния каждого входа, где «0» означает, что дискретный вход выключен, а «1» — включен. Отсчет начинается слева направо, начиная с первого входа. Подпункт меню «Фильтр» позволяет установить значение фильтра для каждого дискретного входа. Единица измерения — мс						
Аналоговые	Значение аналоговых входов выводится с учетом верхней и нижней границ, заданных в пользовательской программе. Значение имеет тип числа с плавающей точкой. Тип датчиков выводит информацию, для какого типа датчика сконфигурирован каждый вход в пользовательской программе. В соответствующих подпунктах меню можно настроить: Тип датчика, Фильтр аналогового входа, Верхние и нижние границы масштабирования						
	Выходы						
Дискретные	Состояние дискретных выходов отображается в виде побитового состояния каждого выхода, где «0» означает, что дискретный выход выключен, «1» — включен. Отсчет начинается слева направо, начиная с первого выхода						
Аналоговые	Состояние аналоговых выводов отображается как текущее значение на каждом канале с диапазоном от 0 до 1. Выводимое значение имеет тип числа с плавающей точкой						
Интерфейсы							
	Настройка интерфейса связи зависит от типа установленной интерфейсной платы и режима работы прибора — Master или Slave						

Продолжение таблицы 7.2

• Настройка параметров работы интерфейса по схеме: скорость обмена/бит данных/четность/стоп бит;					
• Протокол позволяет изменить собственный адрес устройства в сети ModBus					
• Настройка параметров работы интерфейса по схеме: скорость обмена/бит данных/четность/стоп бит;					
• Протокол – данный подпункт меню содержит список сконфигурированных устройств с помощью OwenLogic и настройку задержки между запросами					
ля каждого устройства можно настроить следующие параметры:					
• Aдрес ModBus — устройства для опроса;					
• Период опроса — временной интервал, через который повторяется опрос;					
• Таймаут ответа — время ожидания ответа от удаленного устройства;					
• Количество попыток — запросов в случае отсутствия ответа от удаленного устройства					
Модули					
·					

Пункт меню содержит информацию о подключенном устройстве на соответствующей позиции:

- Слот 1 первый модуль на шине;
- Слот 2 второй модуль на шине.

Состав настроек модуля зависит от типа подключенного модуля. Если нет подключенных модулей, пункт меню скрыт

7.2.2 Переходы между экранами

Для перемещения между экранами используются переходы, создаваемые пользователем с помощью OwenLogic. Переходы могут осуществляться по нажатию кнопок и по изменению переменной. Более подробно о переходах и их работе см. справку OwenLogic.

ПРИМЕЧАНИЕ
Во время создания переходов следует помнить, что приоритет отдается командам перехода на экран.

Пример

Назначение на кнопки и перехода на другой экран не позволяет пролистывать строки на текущем экране. Назначение на кнопку SEL перехода на другой экран не позволяет перейти в режим редактирования.

7.2.3 Режим редактирования

ЖКИ может отображать набор символов, изображенный на рисунке ниже.

	ŀ	11	#	#	%	O:	7	()	*	+	,			7	Ø	1	2	3	4	5	6	7
8	9	:	ş	<	=	\triangleright	7	a	А	В	C	D	Ε	F	G	Н	Ι	J	K	L	М	Ν	O
P	Q	R	5	T	U	Ų	W	Х	Y	Ζ	Ε	J	^		٠	<	>>	а	Ь	C	d	₽	f
h	i	j	k	1	M	n	O	P	9	۳	s	t.	u	Ų	W	Х	Э	Z	~~	Ë	ë	A	8
B	Г	Д	E	Ж	3	И	Й	K	J	M	Н	0	П	P	C	Т	У	Φ	Χ	Ц	Ч	Ш	Щ
Ъ	Ы	Ь	9	Ю	Я	a	6	₿	г	Д	0	ж	3	И	Й	К	JI	М	Н	О	П	P	c
T	¥	φ	Х	Ц	Ч	Ш	Щ	Ъ	ы	ь	Э	Ю	Я										

Рисунок 7.3 – Поддерживаемые символы для отображения на экране ПР200

ПРИМЕЧАНИЕ Набор символов реализован в рамках кодировки Windows-1251.
Набор символов реализован в рамках кодировки Windows-1251.

Элементы меню могут быть редактируемыми и нередактируемыми в зависимости от типа элемента и его свойств, заданных с помощью OwenLogic.

Для изменения значения элемента меню следует:

- 1. Нажать кнопку [SEL] Выбранный элемент начнет мигать.
- 2. С помощью кнопок и изменить значение. Если необходимо перемещаться по разрядам, то следует использовать комбинации кнопок ALT + и ALT + .
- 3. Для сохранения измененного значения и перехода к следующему редактируемому элементу нажать SEL. Для сохранения измененного значения и выхода из режима редактирования нажать кнопку OK Для сброса измененного значения в первоначальное состояние и выхода из режима редактирования следует нажать кнопку ESC

7.2.4 Режим автоформатирования

Режим автоформатирования отображает переменную с максимальной точностью в зависимости от количества зарезервированных знаков. Режим автоформатирования работает только для вещественных переменных. Режим можно включить установив в поле «Знаков после запятой» режим ABTO в OwenLogic.

Пример

Для отображения переменной «VAR1» зарезервировано 4 знака с автоформатированием. Значение переменной в приборе составляет «1,546745», на экране прибора переменная будет отображена в виде значения 1,547 (автоматически округляется). Если в ходе выполнения пользовательской программы переменная принимает значение «110,478692», то на экране прибора переменная будет отображена в виде значения 110,5.

7.3 Работа с модулями расширения

Чтобы увеличить количество входов/выходов ПР200 следует воспользоваться модулями расширения линейки ПРМ.

Максимальное допустимое количество модулей на шине обмена — не более двух. Работа модулей расширения определяется пользовательской программой, написанной в OwenLogic.

Каждый модуль имеет независимое питание с усиленной гальванической изоляцией, что позволяет подключать к прибору модули любой модификации с любым питающим напряжением.

Описание функционала модулей см. в Руководстве по эксплуатации на модуль.

7.4 Часы реального времени

Прибор оснащен встроенными часами реального времени. При наличии питания прибора часы реального времени питаются от подаваемого на соответствующий разъем напряжения. В случае отсутствия основного питания часы реального времени питаются от батареи.

Энергии полностью заряженной батареи хватает на непрерывную работу часов реального времени в течение 5 лет. В случае эксплуатации прибора при температуре на границах рабочего диапазона время работы часов сокращается.

7.5 Настройка даты и времени с лицевой панели

Для настройки времени и даты следует:

- 1. Нажать и удерживать кнопку Ш три секунды.
- 2. На экране появится меню Прибор. Нажать кнопку ОК
- 3. На экране появится меню **Версия**. Нажимать кнопку **У** до тех пор, пока не появится меню
- 4. Нажать на кнопку ОК Появится меню Время/Дата.
- 5. Нажать на кнопку 🖭 Первая цифра даты начнет мигать. Кнопками 🔊 и 🦭 установить нужное значение. Для редактирования следующего значения нажать сочетание 🕮 + 🤟.

6. После ввода необходимого значения выйти из системного меню, удерживая кнопку $\stackrel{\hbox{\tiny ESC}}{=}$ три секунды.

8 Техническое обслуживание

8.1 Общие указания

Во время выполнения работ по техническому обслуживанию прибора следует соблюдать требования безопасности, из раздела 3.

Техническое обслуживание прибора проводится не реже одного раза в 6 месяцев и включает следующие процедуры:

- проверка крепления прибора;
- проверка винтовых соединений;
- удаление пыли и грязи с клеммника прибора.

8.2 Юстировка

8.2.1 Общие указания

Юстировка прибора заключается в проведении технологических операций, обеспечивающих восстановление метрологических характеристик прибора в случае изменения их после длительной эксплуатации.

ПРЕДУПРЕЖДЕНИЕ

Необходимость проведения юстировки определяется по результатам поверки прибора и должна производиться только квалифицированными специалистами метрологических служб, осуществляющих эту поверку.

Юстировка выполняется с помощью эталонных источников сигналов, имитирующих работу датчиков и подключаемых к контактам прибора. Во время юстировки прибор вычисляет соотношения между поступившим входным сигналом и опорным сигналом.

Вычисленные соотношения (коэффициенты юстировки) записываются в энергонезависимую память прибора и используются как базовые для выполнения всех дальнейших расчетов.

Каждый аналоговый вход имеет собственные коэффициенты юстировки для каждого типа датчика.

Если вычисленные значения коэффициентов выходят за пределы, установленные для него во время разработки прибора, в OwenLogic выводится сообщение о причине этой ошибки.

8.2.2 Юстировка прибора для работы с активными датчиками с выходным сигналом «0...10 В», «0...4000 Ом» и «4...20 мА»

Для выполнения юстировки следует:

1. Подключить к контактам входа прибора дифференциальный вольтметр В1-12 в режиме калибратора напряжений или аналогичный ему источник образцового напряжения с классом точности не ниже 0,05. Соединение прибора с калибратором выполнить по схеме, приведенной на рисунке ниже с соблюдением полярности подключения.

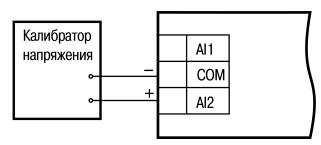


Рисунок 8.1 - Подключение калибратора напряжения

2. Запустить OwenLogic и выбрать в меню пункт «Прибор» → «Юстировка входов/выходов» для запуска мастера юстировки. В диалоговом окне «Выбор элемента» выбрать пункт «Аналоговые входы» (см. рисунок 8.2).

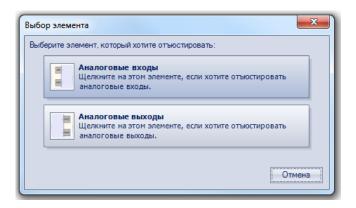


Рисунок 8.2 - Меню юстировки

3. Далее в окне «Настройка параметров» выбрать значение параметра «Тип датчика» равным «0...10 В» (см. рисунок 8.3).

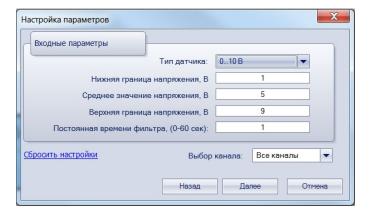


Рисунок 8.3 - Меню настройки параметров

- 4. Установить уровни для юстировки, постоянную времени фильтра и канал. Увеличение постоянной времени фильтра увеличивает время юстировки, но позволяет получить более точные калибровочные коэффициенты. Юстировку проходит каждый канал в отдельности. Если выбрать настройку «все каналы», то юстировка проходит по всем четырем каналам, поэтому необходимо подавать соответствующие уровни сигнала на все каналы сразу.
- 5. Нажать кнопку «Далее» и следовать указаниям мастера юстировки.
- 6. В случае использования входа для измерения сигналов «4...20 мА» рекомендуется провести юстировку входа, предварительно выбрав параметр «Тип датчика» равным «4...20 мА». Калибратор напряжения следует подключить по схеме, изображенной на рисунке 8.1.
- В случае использования входа для измерения сигналов «0...4000 Ом» рекомендуется провести юстировку входа, предварительно выбрав параметр «Тип датчика» равным «0...4000 Ом».

8.2.3 Юстировка выходных элементов типа «И»

Для юстировки следует:

1. Подключить ВЭ типа «И» (ЦАП «параметр – ток 4...20 мА») согласно схеме, приведенной на рисунке 8.4.

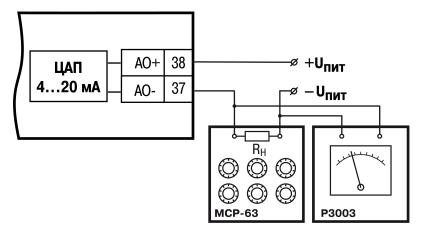


Рисунок 8.4 – Схема подключения к ВЭ типа «И» (R_H = 500 Ом)

Проконтролировать напряжение источника питания — оно должно быть в диапазоне 15...30 В.

В качестве измерителя напряжения использовать прибор для калибровки вольтметров Р3003 или иной прибор того же класса с разрешающей способностью 0,001 В.

2. Запустить OwenLogic и выбрать в меню пункт «Прибор» → «Юстировка входов/выходов» для запуска мастера юстировки.

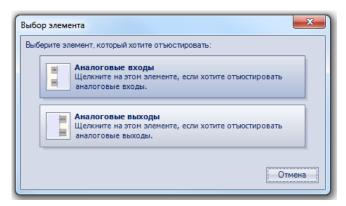


Рисунок 8.5 - Выбор элемента

- 3. В диалоговом окне «Выбор элемента» выбрать пункт «Аналоговые выходы».
- 4. Во время подачи прибором выходного тока, пересчитать значение измеренного напряжения в ток и задать его в параметре «Измеренное значение».

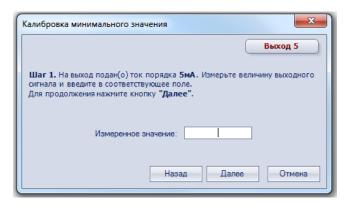


Рисунок 8.6 – Калибровка минимального значения

5. Далее следовать рекомендациям мастера юстировки для проведения процедуры юстировки выходных элементов типа «У».

8.2.4 Юстировка выходных элементов типа «У»

Для юстировки следует:

1. Подключить прибор по схеме, приведенной на рисунке ниже с соблюдением полярности подключения. Проконтролировать напряжение источника питания — оно должно быть в диапазоне 15...30 В. В качестве измерителя напряжения может быть использован прибор для калибровки вольтметров Р3003 или иной прибор того же класса с разрешающей способностью 0.001 В.

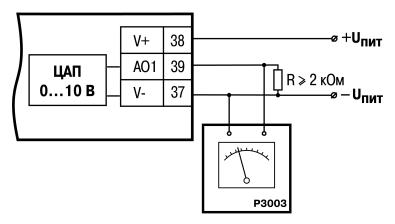


Рисунок 8.7 - Схема подключения нагрузки к ВЭ типа У

- Запустить OwenLogic и выбрать в меню пункт «Прибор» → «Юстировка входов/выходов» для запуска мастера юстировки.
- 3. В диалоговом окне «Выбор элемента» выбрать пункт «Аналоговые выходы» (см. рисунок 8.8).

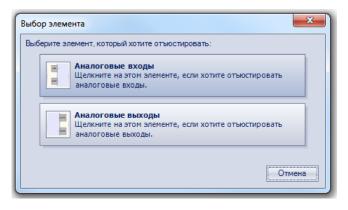


Рисунок 8.8 - Меню выбора элемента

4. Нажать кнопку «Далее» для начала процедуры вычисления коэффициентов юстировки

8.3 Снятие крышки

ПРЕДУПРЕЖДЕНИЕ

Чтобы избежать порчи прибора, любые операции по разборке прибора должен выполнять обученный специалист.

Для снятия крышки следует:

- 1. Отключить питание прибора и всех подключенных к нему устройств. Отделить от прибора съемные части клеммников.
- 2. Снять верхнюю крышку. Для этого отверткой вывести из зацепления защелки основания из отверстий в торцевых поверхностях крышки (см. рисунок 8.9, 1). Приподнять крышку над основанием.
- 3. Отверткой отогнуть крышку от разъемов на среднем уровне с двух сторон (см. рисунок 8.9, 2). Усилие следует прикладывать у нижних разъемов.

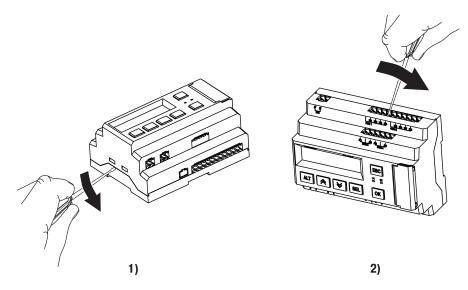


Рисунок 8.9 – Схема разборки ПР200. Снятие верхней крышки

4. Снять крышку (см. рисунок 8.10, стрелка 1). Убрать клавиатуру (стрелка 2).

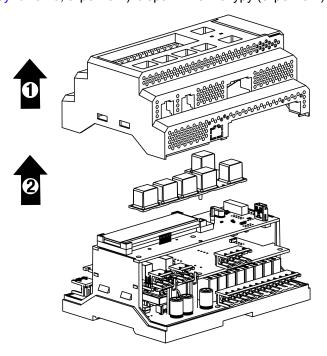


Рисунок 8.10 – Схема разборки ПР200. Отделение верхней крышки и клавиатуры

8.4 Замена элемента питания

ПРЕДУПРЕЖДЕНИЕ

Чтобы избежать порчи прибора, любые операции по разборке прибора должен выполнять обученный специалист.

Для замены элемента питания следует:

- 1. Отключить питание прибора и всех подключенных к нему устройств. Снять крышку.
- 2. Удерживая у торцов и аккуратно раскачивая, отделить верхнюю плату от штыревых разъемов средней платы (см. рисунок 8.11).

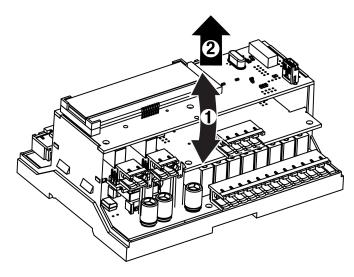


Рисунок 8.11 – Схема разборки ПР200. Демонтаж верхней платы

3. Перевернуть верхнюю плату, поддеть отверткой и извлечь из гнезда элемент питания CR2032.

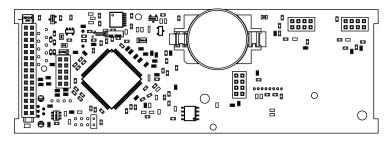


Рисунок 8.12 – Вид на оборотную сторону верхней платы

4. Установить новый элемент питания. Действия пунктов 1-4 повторить в обратном порядке.

8.5 Установка интерфейсной платы

ПРЕДУПРЕЖДЕНИЕ

Чтобы избежать порчи прибора, любые операции по разборке прибора должен выполнять обученный специалист.

У прибора предусмотрено два посадочных места под интерфейсную плату ПР-ИП485 — слот 1 и слот 2 (см. рисунок 8.13).

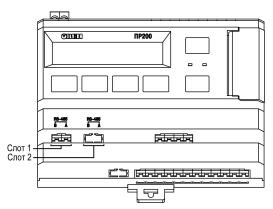


Рисунок 8.13 - Нумерация слотов RS-485

Для установки интерфейсной платы следует:

- 1. Отключить питание прибора.
- 2. Снять крышку корпуса, аккуратно раскачивая, вытащить верхнюю плату.
- 3. Вырезать окно в крышке под клеммник платы, смонтировать в стойки интерфейсную плату.
- 4. Вставить верхнюю плату.

5. Надеть крышку обратно.

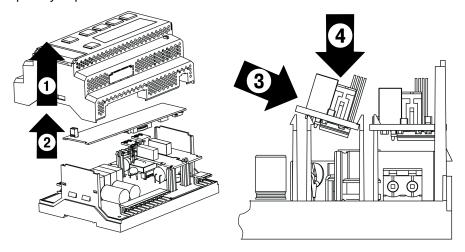


Рисунок 8.14 – Последовательность установки интерфейсной платы

После установки платы в прибор, настройки обмена по добавленному интерфейсу RS-485 следует произвести в OwenLogic.

ПРИМЕЧАНИЕ

По умолчанию в OwenLogic интерфейс добавляется в слот с номером 1.

9 Маркировка

На корпус прибора нанесены:

- наименование прибора;
- степень защиты корпуса по ГОСТ 14254;
- напряжение и частота питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ IEC 61131-2-2012;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

На потребительскую тару нанесены:

- наименование прибора;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

10 Упаковка

Упаковка прибора производится в соответствии с ГОСТ 23088-80 в потребительскую тару, выполненную из коробочного картона по ГОСТ 7933-89.

Упаковка прибора при пересылке почтой производится по ГОСТ 9181-74.

11 Комплектность

Наименование	Количество
Прибор	1 шт.
Краткое руководство	1 экз.
Паспорт и Гарантийный талон	1 экз.
Комплект клеммных соединителей	1 шт.

ПРЕДУПРЕЖДЕНИЕ Изготовитель оставляет за собой право внесения дополнений в комплектность прибора.

12 Транспортирование и хранение

Прибор должен транспортироваться в закрытом транспорте любого вида. В транспортных средствах тара должна крепиться согласно правилам, действующим на соответствующих видах транспорта.

Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 25 до плюс 55 °C с соблюдением мер защиты от ударов и вибраций.

Прибор следует перевозить в транспортной таре поштучно или в контейнерах.

Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150-69.В воздухе не должны присутствовать агрессивные примеси.

Прибор следует хранить на стеллажах.

13 Гарантийные обязательства

Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации – 24 месяца со дня продажи.

В случае выхода прибора из строя в течение гарантийного срока при соблюдении условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

Порядок передачи прибора в ремонт содержится в паспорте и в гарантийном талоне.

Приложение А. Описание клеммников

Общий вид прибора с указанными номерами клемм, разъема программирования и светодиодов представлен на рисунках ниже. Назначение клемм приведено в таблицах после каждого рисунка.

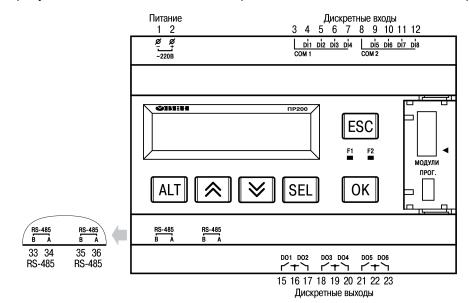


Рисунок А.1 – Расположение контактов ПР200-220.1.2.Х

Таблица А.1 – Назначение контактов клеммной колодки ПР200-220.1.2.Х

Номер контакта	Назначение контактов	Номер контакта	Назначение контактов
1	Напряжение питания PWR (230 B)	15	Дискретный выход 1
2	Напряжение питания PWR (230 B)	16	Общий контакт для выходов 12
3	Общий контакт для входов 14	17	Дискретный выход 2
4	Дискретный вход 1 (230 В)	18	Дискретный выход 3
5	Дискретный вход 2 (230 В)	19	Общий контакт для выходов 34
6	Дискретный вход 3 (230 В)	20	Дискретный выход 4
7	Дискретный вход 4 (230 В)	21	Дискретный выход 5
8	Общий контакт для входов 58	22	Общий контакт для выходов 56
9	Дискретный вход 5 (230 В)	23	Дискретный выход 6
10	Дискретный вход 6 (230 В)	33	СЛОТ1 Сигнал RS-485 B
11	Дискретный вход 7 (230 В)	34	СЛОТ1 Сигнал RS-485 A
12	Дискретный вход 8 (230 В)	35	СЛОТ2 Сигнал RS-485 B
_	_	36	СЛОТ2 Сигнал RS-485 A

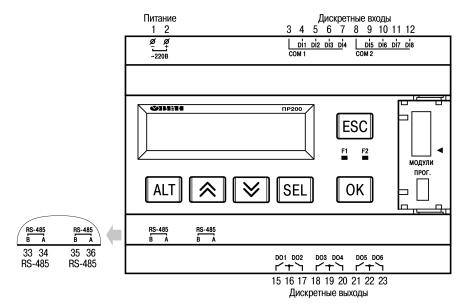


Рисунок А.2 – Расположение контактов ПР200-220.21.2.Х

Таблица А.2 – Назначение контактов клеммной колодки ПР200-220.21.2.Х

Номер контакта	Назначение контактов	Номер контакта	Назначение контактов
1	Напряжение питания PWR (230 B)	15	Дискретный выход 1
2	Напряжение питания PWR (230 B)	16	Общий контакт для выходов 12
3	Общий контакт для входов 14	17	Дискретный выход 2
4	Дискретный вход 1 (24 В)	18	Дискретный выход 3
5	Дискретный вход 2 (24 В)	19	Общий контакт для выходов 34
6	Дискретный вход 3 (24 В)	20	Дискретный выход 4
7	Дискретный вход 4 (24 В)	21	Дискретный выход 5
8	Общий контакт для входов 58	22	Общий контакт для выходов 56
9	Дискретный вход 5 (24 В)	23	Дискретный выход 6
10	Дискретный вход 6 (24 В)	33	СЛОТ1 Сигнал RS-485 B
11	Дискретный вход 7 (24 В)	34	СЛОТ1 Сигнал RS-485 A
12	Дискретный вход 8 (24 В)	35	СЛОТ2 Сигнал RS-485 B
_	<u> </u>	36	СЛОТ2 Сигнал RS-485 A

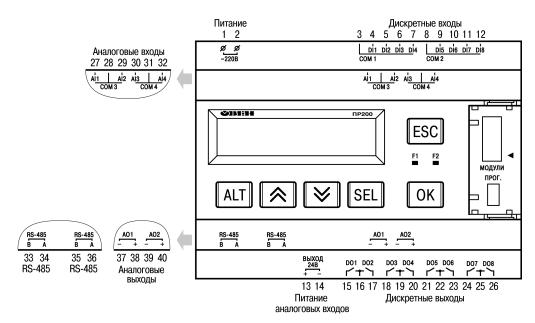


Рисунок А.3 – Расположение контактов ПР200-220.2.2.Х

Таблица А.3 – Назначение контактов клеммной колодки ПР200-220.2.2.Х

Номер контакта	Назначение контактов	Номер контакта	Назначение контактов
1	Напряжение питания PWR (230 B)	21	Дискретный выход 5
2	Напряжение питания PWR (230 B)	22	Общий контакт для выходов 56
3	Общий контакт для входов 14	23	Дискретный выход 6
4	Дискретный вход 1 (230 В)	24	Дискретный выход 7
5	Дискретный вход 2 (230 В)	25	Общий контакт для выходов 78
6	Дискретный вход 3 (230 В)	26	Дискретный выход 8
7	Дискретный вход 4 (230 В)	27	Аналоговый вход 1
8	Общий контакт для входов 58	28	Общий контакт для входов 12
9	Дискретный вход 5 (230 В)	29	Аналоговый вход 2
10	Дискретный вход 6 (230 В)	30	Аналоговый вход 3
11	Дискретный вход 7 (230 В)	31	Общий контакт для входов 34
12	Дискретный вход 8 (230 В)	32	Аналоговый вход 4
13	Выходное напряжение питания 24 В — контакт «+»	33	СЛОТ1 Сигнал RS-485 B
14	Выходное напряжение питания 24 В — контакт «—»	34	СЛОТ1 Сигнал RS-485 A
15	Дискретный выход 1	35	СЛОТ2 Сигнал RS-485 B
16	Общий контакт для выходов 12	36	СЛОТ2 Сигнал RS-485 A
17	Дискретный выход 2	37	Аналоговый выход 1 —
18	Дискретный выход 3	38	Аналоговый выход 1+
19	Общий контакт для выходов 34	39	Аналоговый выход 2 —
20	Дискретный выход 4	40	Аналоговый выход 2+

Рисунок А.4 – Расположение контактов ПР200-220.22.2.Х

Таблица А.4 – Назначение контактов клеммной колодки ПР200-220.22.2.Х

Номер контакта	Назначение контактов	Номер контакта	Назначение контактов
1	Напряжение питания PWR (230 B)	21	Дискретный выход 5
2	Напряжение питания PWR (230 B)	22	Общий контакт для выходов 56
3	Общий контакт для входов 14	23	Дискретный выход 6
4	Дискретный вход 1 (24 В)	24	Дискретный выход 7
5	Дискретный вход 2 (24 В)	25	Общий контакт для выходов 78
6	Дискретный вход 3 (24 В)	26	Дискретный выход 8
7	Дискретный вход 4 (24 В)	27	Аналоговый вход 1
8	Общий контакт для входов 58	28	Общий контакт для входов 12
9	Дискретный вход 5 (24 В)	29	Аналоговый вход 2
10	Дискретный вход 6 (24 В)	30	Аналоговый вход 3
11	Дискретный вход 7 (24 В)	31	Общий контакт для входов 34
12	Дискретный вход 8 (24 В)	32	Аналоговый вход 4
13	Выходное напряжение питания 24 В — контакт «+»	33	СЛОТ1 Сигнал RS-485 B
14	Выходное напряжение питания 24 В — контакт «—»	34	СЛОТ1 Сигнал RS-485 A
15	Дискретный выход 1	35	СЛОТ2 Сигнал RS-485 B
16	Общий контакт для выходов 12	36	СЛОТ2 Сигнал RS-485 A
17	Дискретный выход 2	37	Аналоговый выход 1 —
18	Дискретный выход 3	38	Аналоговый выход 1+
19	Общий контакт для выходов 34	39	Аналоговый выход 2 —
20	Дискретный выход 4	40	Аналоговый выход 2+

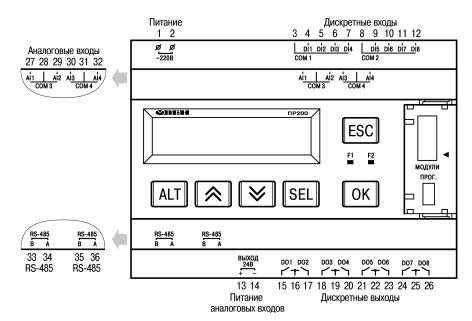


Рисунок А.5 – Расположение контактов ПР200-220.3.2.Х

Таблица А.5 – Назначение контактов клеммной колодки ПР200-220.3.2.Х

Номер контакта	Назначение контактов	Номер контакта	Назначение контактов
1	Напряжение питания PWR (230 B)	19	Общий контакт для выходов 34
2	Напряжение питания PWR (230 B)	20	Дискретный выход 4
3	Общий контакт для входов 14	21	Дискретный выход 5
4	Дискретный вход 1 (230 В)	22	Общий контакт для выходов 56
5	Дискретный вход 2 (230 В)	23	Дискретный выход 6
6	Дискретный вход 3 (230 В)	24	Дискретный выход 7
7	Дискретный вход 4 (230 В)	25	Общий контакт для выходов 78
8	Общий контакт для входов 58	26	Дискретный выход 8
9	Дискретный вход 5 (230 В)	27	Аналоговый вход 1
10	Дискретный вход 6 (230 В)	28	Общий контакт для входов 12
11	Дискретный вход 7 (230 В)	29	Аналоговый вход 2
12	Дискретный вход 8 (230 В)	30	Аналоговый вход 3
13	Выходное напряжение питания 24 В — контакт «+»	31	Общий контакт для входов 34
14	Выходное напряжение питания 24 В — контакт «—»	32	Аналоговый вход 4
15	Дискретный выход 1	33	СЛОТ1 Сигнал RS-485 B
16	Общий контакт для выходов 12	34	СЛОТ1 Сигнал RS-485 A
17	Дискретный выход 2	35	СЛОТ2 Сигнал RS-485 B
18	Дискретный выход 3	36	СЛОТ2 Сигнал RS-485 A

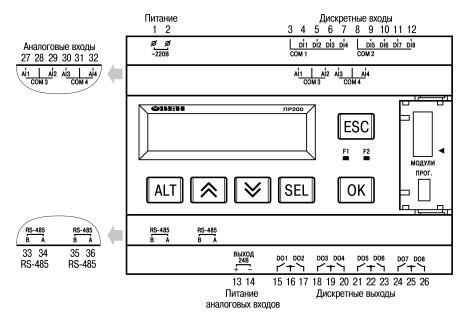


Рисунок А.6 – Расположение контактов ПР200-220.23.2.Х

Таблица А.6 – Назначение контактов клеммной колодки ПР200-220.23.2.Х

Номер контакта	Назначение контактов	Номер контакта	Назначение контактов
1	Напряжение питания PWR (230 B)	19	Общий контакт для выходов 34
2	Напряжение питания PWR (230 B)	20	Дискретный выход 4
3	Общий контакт для входов 14	21	Дискретный выход 5
4	Дискретный вход 1 (24 В)	22	Общий контакт для выходов 56
5	Дискретный вход 2 (24 В)	23	Дискретный выход 6
6	Дискретный вход 3 (24 В)	24	Дискретный выход 7
7	Дискретный вход 4 (24 В)	25	Общий контакт для выходов 78
8	Общий контакт для входов 58	26	Дискретный выход 8
9	Дискретный вход 5 (24 В)	27	Аналоговый вход 1
10	Дискретный вход 6 (24 В)	28	Общий контакт для входов 12
11	Дискретный вход 7 (24 В)	29	Аналоговый вход 2
12	Дискретный вход 8 (24 В)	30	Аналоговый вход 3
13	Выходное напряжение питания 24 В — контакт «+»	31	Общий контакт для входов 34
14	Выходное напряжение питания 24 В — контакт «—»	32	Аналоговый вход 4
15	Дискретный выход 1	33	СЛОТ1 Сигнал RS-485 B
16	Общий контакт для выходов 12	34	СЛОТ1 Сигнал RS-485 A
17	Дискретный выход 2	35	СЛОТ2 Сигнал RS-485 B
18	Дискретный выход 3	36	СЛОТ2 Сигнал RS-485 A

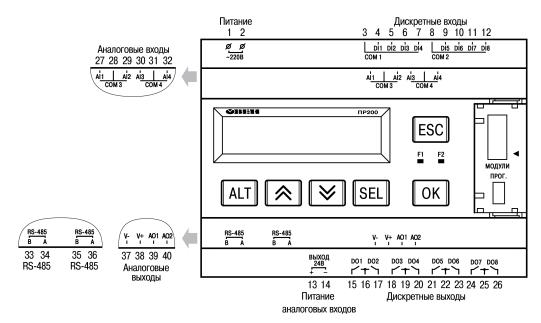


Рисунок А.7 – Расположение контактов ПР200-220.4.2.Х

Таблица А.7 – Назначение контактов клеммной колодки ПР200-220.4.2.Х

Номер контакта	Назначение контактов	Номер контакта	Назначение контактов
1	Напряжение питания PWR (230 B)	21	Дискретный выход 5
2	Напряжение питания PWR (230 B)	22	Общий контакт для выходов 56
3	Общий контакт для входов 14	23	Дискретный выход 6
4	Дискретный вход 1 (230 В)	24	Дискретный выход 7
5	Дискретный вход 2 (230 В)	25	Общий контакт для выходов 78
6	Дискретный вход 3 (230 В)	26	Дискретный выход 8
7	Дискретный вход 4 (230 В)	27	Аналоговый вход 1
8	Общий контакт для входов 58	28	Общий контакт для входов 12
9	Дискретный вход 5 (230 В)	29	Аналоговый вход 2
10	Дискретный вход 6 (230 В)	30	Аналоговый вход 3
11	Дискретный вход 7 (230 В)	31	Общий контакт для входов 34
12	Дискретный вход 8 (230 В)	32	Аналоговый вход Al4
13	Выходное напряжение питания 24 В — контакт «+»	33	СЛОТ1 Сигнал RS-485 B
14	Выходное напряжение питания 24 В — контакт «—»	34	СЛОТ1 Сигнал RS-485 A
15	Дискретный выход 1	35	СЛОТ2 Сигнал RS-485 B
16	Общий контакт для выходов 12	36	СЛОТ2 Сигнал RS-485 A
17	Дискретный выход 2	37	Питание аналоговых выходов V—
18	Дискретный выход 3	38	Питание аналоговых выходов V+
19	Общий контакт для выходов 34	39	Аналоговый выход 1
20	Дискретный выход 4	40	Аналоговый выход 2

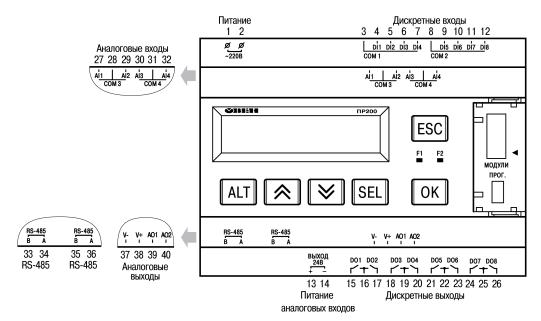


Рисунок А.8 – Расположение контактов ПР200-220.24.2.Х

Таблица А.8 – Назначение контактов клеммной колодки ПР200-220.24.2.Х

Номер контакта	Назначение контактов	Номер контакта	Назначение контактов
1	Напряжение питания PWR (230 B)	21	Дискретный выход 5
2	Напряжение питания PWR (230 B)	22	Общий контакт для выходов 56
3	Общий контакт для входов 14	23	Дискретный выход 6
4	Дискретный вход 1 (24 В)	24	Дискретный выход 7
5	Дискретный вход 2 (24 В)	25	Общий контакт для выходов 78
6	Дискретный вход 3 (24 В)	26	Дискретный выход 8
7	Дискретный вход 4 (24 В)	27	Аналоговый вход 1
8	Общий контакт для входов 58	28	Общий контакт для входов 12
9	Дискретный вход 5 (24 В)	29	Аналоговый вход 2
10	Дискретный вход 6 (24 В)	30	Аналоговый вход 3
11	Дискретный вход 7 (24 В)	31	Общий контакт для входов 34
12	Дискретный вход 8 (24 В)	32	Аналоговый вход Al4
13	Выходное напряжение питания 24 В — контакт «+»	33	СЛОТ1 Сигнал RS-485 B
14	Выходное напряжение питания 24 В — контакт «—»	34	СЛОТ1 Сигнал RS-485 A
15	Дискретный выход 1	35	СЛОТ2 Сигнал RS-485 B
16	Общий контакт для выходов 12	36	СЛОТ2 Сигнал RS-485 A
17	Дискретный выход 2	37	Питание аналоговых выходов V—
18	Дискретный выход 3	38	Питание аналоговых выходов V+
19	Общий контакт для выходов 34	39	Аналоговый выход 1
20	Дискретный выход 4	40	Аналоговый выход 2

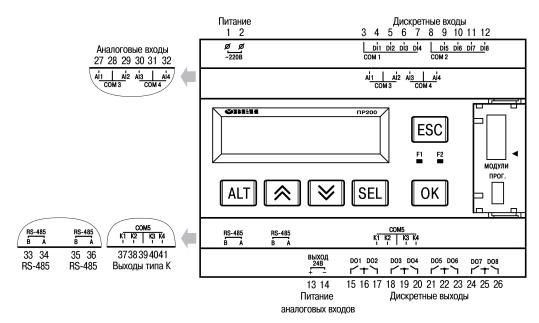


Рисунок А.9 – Расположение контактов ПР200-220.5.2.Х

Таблица А.9 – Назначение контактов клеммной колодки ПР200-220.5.2.Х

Номер контакта	Назначение контактов	Номер контакта	Назначение контактов
1	Напряжение питания PWR (230 B)	21	Дискретный выход 5
2	Напряжение питания PWR (230 B)	22	Общий контакт для выходов 56
3	Общий контакт для входов 14	23	Дискретный выход 6
4	Дискретный вход 1 (230 В)	24	Дискретный выход 7
5	Дискретный вход 2 (230 В)	25	Общий контакт для выходов 78
6	Дискретный вход 3 (230 В)	26	Дискретный выход 8
7	Дискретный вход 4 (230 В)	27	Аналоговый вход 1
8	Общий контакт для входов 58	28	Общий контакт для входов 12
9	Дискретный вход 5 (230 В)	29	Аналоговый вход 2
10	Дискретный вход 6 (230 В)	30	Аналоговый вход 3
11	Дискретный вход 7 (230 В)	31	Общий контакт для входов 34
12	Дискретный вход 8 (230 В)	32	Аналоговый вход Al4
13	Выходное напряжение питания 24 В — контакт «+»	33	СЛОТ1 Сигнал RS-485 B
14	Выходное напряжение питания 24 В — контакт «—»	34	СЛОТ1 Сигнал RS-485 A
15	Дискретный выход 1	35	СЛОТ2 Сигнал RS-485 B
16	Общий контакт для выходов 12	36	СЛОТ2 Сигнал RS-485 A
17	Дискретный выход 2	37	Аналоговый выход К1
18	Дискретный выход 3	38	Аналоговый выход К2
19	Общий контакт для выходов 34	39	Общий контакт для К1К4
20	Дискретный выход 4	40	Аналоговый выход К3
	_	41	Аналоговый выход К4

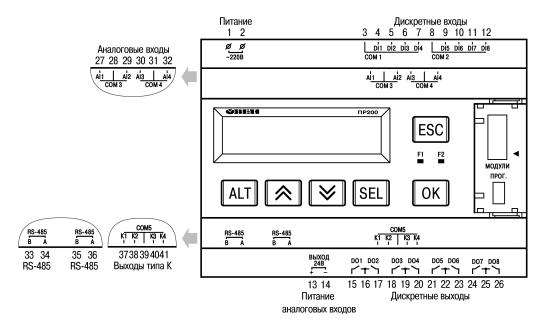


Рисунок А.10 – Расположение контактов ПР200-220.25.2.Х

Таблица А.10 – Назначение контактов клеммной колодки ПР200-220.25.2.Х

Номер контакта	Назначение контактов	Номер контакта	Назначение контактов
1	Напряжение питания PWR (230 B)	21	Дискретный выход 5
2	Напряжение питания PWR (230 B)	22	Общий контакт для выходов 56
3	Общий контакт для входов 14	23	Дискретный выход 6
4	Дискретный вход 1 (24 В)	24	Дискретный выход 7
5	Дискретный вход 2 (24 В)	25	Общий контакт для выходов 78
6	Дискретный вход 3 (24 В)	26	Дискретный выход 8
7	Дискретный вход 4 (24 В)	27	Аналоговый вход 1
8	Общий контакт для входов 58	28	Общий контакт для входов 12
9	Дискретный вход 5 (24 В)	29	Аналоговый вход 2
10	Дискретный вход 6 (24 В)	30	Аналоговый вход 3
11	Дискретный вход 7 (24 В)	31	Общий контакт для входов 34
12	Дискретный вход 8 (24 В)	32	Аналоговый вход Al4
13	Выходное напряжение питания 24 В — контакт «+»	33	СЛОТ1 Сигнал RS-485 B
14	Выходное напряжение питания 24 В — контакт «—»	34	СЛОТ1 Сигнал RS-485 A
15	Дискретный выход 1	35	СЛОТ2 Сигнал RS-485 B
16	Общий контакт для выходов 12	36	СЛОТ2 Сигнал RS-485 A
17	Дискретный выход 2	37	Аналоговый выход К1
18	Дискретный выход 3	38	Аналоговый выход К2
19	Общий контакт для выходов 34	39	Общий контакт для К1К4
20	Дискретный выход 4	40	Аналоговый выход К3
		41	Аналоговый выход К4

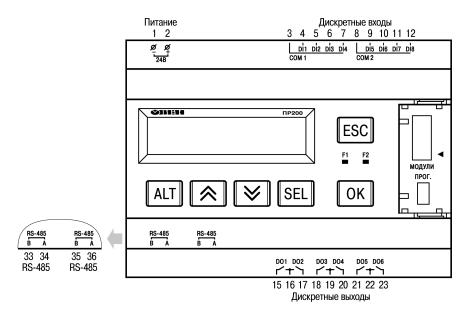


Рисунок А.11 – Расположение контактов и элементов индикации в приборе ПР200-24.1.2.X

Таблица А.11 – Назначение контактов клеммной колодки ПР200-24.1.2.Х

Номер контакта	Назначение контактов	Номер контакта	Назначение контактов
1	Входное напряжение питания (24 B) – контакт «—»	15	Дискретный выход 1
2	Входное напряжение питания (24 B) – контакт «+»	16	Общий контакт для выходов 12
3	Общий контакт для входов 14	17	Дискретный выход 2
4	Дискретный вход 1 (24 В)	18	Дискретный выход 3
5	Дискретный вход 2 (24 В)	19	Общий контакт для выходов 34
6	Дискретный вход 3 (24 В)	20	Дискретный выход 4
7	Дискретный вход 4 (24 В)	21	Дискретный выход 5
8	Общий контакт для входов 58	22	Общий контакт для выходов 56
9	Дискретный вход 5 (24 В)	23	Дискретный выход 6
10	Дискретный вход 6 (24 В)	33	СЛОТ1 Сигнал RS-485 B
11	Дискретный вход 7 (24 В)	34	СЛОТ1 Сигнал RS-485 A
12	Дискретный вход 8 (24 В)	35	СЛОТ2 Сигнал RS-485 B
_	_	36	СЛОТ2 Сигнал RS-485 A

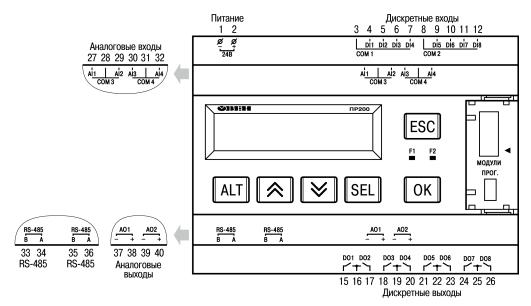


Рисунок А.12 – Расположение контактов ПР200-24.2.2.Х

Таблица А.12 – Назначение контактов клеммной колодки ПР200-24.2.2.Х

Номер контакта	Назначение контактов	Номер контакта	Назначение контактов
1	Входное напряжение питания (24 B) – контакт «—»	22	Общий контакт для выходов 56
2	Входное напряжение питания (24 B) – контакт «+»	23	Дискретный выход 6
3	Общий контакт для входов 1–4	24	Дискретный выход 7
4	Дискретный вход 1 (24 В)	25	Общий контакт для выходов 78
5	Дискретный вход 2 (24 В)	26	Дискретный выход 8
6	Дискретный вход 3 (24 В)	27	Аналоговый вход 1
7	Дискретный вход 4 (24 В)	28	Общий контакт для входов 12
8	Общий контакт для входов 58	29	Аналоговый вход 2
9	Дискретный вход 5 (24 В)	30	Аналоговый вход 3
10	Дискретный вход 6 (24 В)	31	Общий контакт для входов 34
11	Дискретный вход 7 (24 В)	32	Аналоговый вход 4
12	Дискретный вход 8 (24 В)	33	СЛОТ1 Сигнал RS-485 B
15	Дискретный выход 1	34	СЛОТ1 Сигнал RS-485 A
16	Общий контакт для выходов 12	35	СЛОТ2 Сигнал RS-485 B
17	Дискретный выход 2	36	СЛОТ2 Сигнал RS-485 A
18	Дискретный выход 3	37	Аналоговый выход 1 —
19	Общий контакт для выходов 34	38	Аналоговый выход 1 +
20	Дискретный выход 4	39	Аналоговый выход 2 —
21	Дискретный выход 5	40	Аналоговый выход 2 +

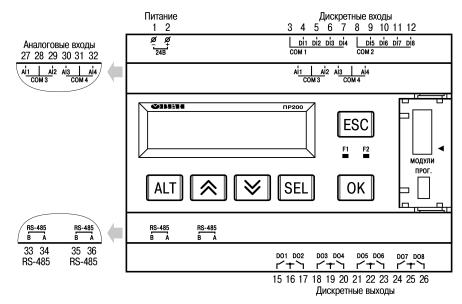


Рисунок А.13 – Расположение контактов ПР200-24.3.2.Х

Таблица А.13 – Назначение контактов клеммной колодки ПР200-24.3.2.Х

Номер контакта	Назначение контактов	Номер контакта	Назначение контактов
1	Входное напряжение питания (24 B) – контакт «—»	20	Дискретный выход 4
2	Входное напряжение питания (24 B) – контакт «+»	21	Дискретный выход 5
3	Общий контакт для входов 14	22	Общий контакт для выходов 56
4	Дискретный вход 1 (24 В)	23	Дискретный выход 6
5	Дискретный вход 2 (24 В)	24	Дискретный выход 7
6	Дискретный вход 3 (24 В)	25	Общий контакт для выходов 78
7	Дискретный вход 4 (24 В)	26	Дискретный выход 8
8	Общий контакт для входов 58	27	Аналоговый вход 1
9	Дискретный вход 5 (24 В)	28	Общий контакт для входов 12
10	Дискретный вход 6 (24 В)	29	Аналоговый вход 2
11	Дискретный вход 7 (24 В)	30	Аналоговый вход 3
12	Дискретный вход 8 (24 В)	31	Общий контакт для входов 34
15	Дискретный выход 1	32	Аналоговый вход 4
16	Общий контакт для выходов 12	33	СЛОТ1 Сигнал RS-485 B
17	Дискретный выход 2	34	СЛОТ1 Сигнал RS-485 A
18	Дискретный выход 3	35	СЛОТ2 Сигнал RS-485 B
19	Общий контакт для выходов 34	36	СЛОТ2 Сигнал RS-485 A

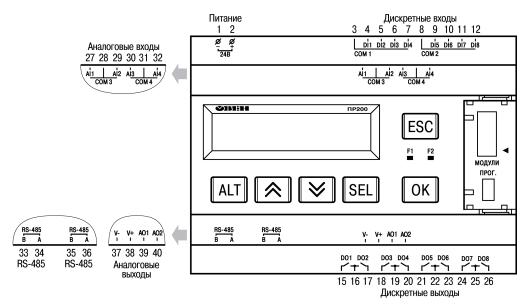


Рисунок А.14 – Расположение контактов ПР200-24.4.2.Х

Таблица А.14 – Назначение контактов клеммной колодки ПР200-24.4.2.Х

Номер контакта	Назначение контактов	Номер контакта	Назначение контактов
1	Входное напряжение питания (24 B) – контакт «—»	22	Общий контакт для выходов 56
2	Входное напряжение питания (24 B) – контакт «+»	23	Дискретный выход 6
3	Общий контакт для входов 14	24	Дискретный выход 7
4	Дискретный вход 1 (24 В)	25	Общий контакт для выходов 78
5	Дискретный вход 2 (24 В)	26	Дискретный выход 8
6	Дискретный вход 3 (24 В)	27	Аналоговый вход 1
7	Дискретный вход 4 (24 В)	28	Общий контакт для входов 12
8	Общий контакт для входов 58	29	Аналоговый вход 2
9	Дискретный вход 5 (24 В)	30	Аналоговый вход 3
10	Дискретный вход 6 (24 В)	31	Общий контакт для входов 34
11	Дискретный вход 7 (24 В)	32	Аналоговый вход 4
12	Дискретный вход 8 (24 В)	33	СЛОТ1 Сигнал RS-485 B
15	Дискретный выход 1	34	СЛОТ1 Сигнал RS-485 A
16	Общий контакт для выходов 12	35	СЛОТ2 Сигнал RS-485 B
17	Дискретный выход 2	36	СЛОТ2 Сигнал RS-485 A
18	Дискретный выход 3	37	Питание аналоговых выходов V-
19	Общий контакт для выходов 34	38	Питание аналоговых выходов V+
20	Дискретный выход 4	39	Аналоговый выход 1
21	Дискретный выход 5	40	Аналоговый выход 2

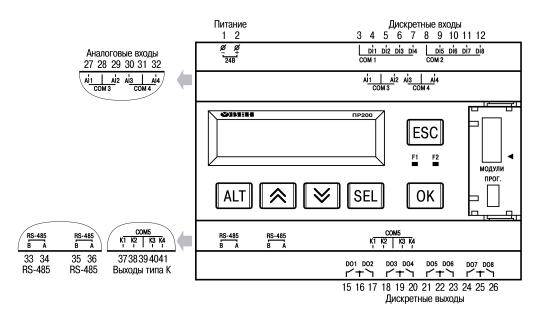


Рисунок А.15 – Расположение контактов ПР200-24.5.2.Х

Таблица А.15 – Назначение контактов клеммной колодки ПР200-24.5.2.Х

Номер контакта	Назначение контактов	Номер контакта	Назначение контактов
1	Входное напряжение питания (24 B) – контакт «—»	22	Общий контакт для выходов 56
2	Входное напряжение питания (24 B) – контакт «+»	23	Дискретный выход 6
3	Общий контакт для входов 14	24	Дискретный выход 7
4	Дискретный вход 1 (24 В)	25	Общий контакт для выходов 78
5	Дискретный вход 2 (24 В)	26	Дискретный выход 8
6	Дискретный вход 3 (24 В)	27	Аналоговый вход 1
7	Дискретный вход 4 (24 В)	28	Общий контакт для входов 12
8	Общий контакт для входов 58	29	Аналоговый вход 2
9	Дискретный вход 5 (24 В)	30	Аналоговый вход 3
10	Дискретный вход 6 (24 В)	31	Общий контакт для входов 34
11	Дискретный вход 7 (24 В)	32	Аналоговый вход 4
12	Дискретный вход 8 (24 В)	33	СЛОТ1 Сигнал RS-485 B
15	Дискретный выход 1	34	СЛОТ1 Сигнал RS-485 A
16	Общий контакт для выходов 12	35	СЛОТ2 Сигнал RS-485 B
17	Дискретный выход 2	36	СЛОТ2 Сигнал RS-485 A
18	Дискретный выход 3	37	Аналоговый выход К1
19	Общий контакт для выходов 34	38	Аналоговый выход К2
20	Дискретный выход 4	39	Общий контакт для К1К4
21	Дискретный выход 5	40	Аналоговый выход К3
_	_	41	Аналоговый выход К4

111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5 тел.: +7 (495) 641-11-56, факс: (495) 728-41-45 тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru

тех. поддержка 24/7. 8-800-7/75-05-65, support@owen.r

отдел продаж: sales@owen.ru

www.owen.ru 1-RU-38699-1.10